Publikation:

Reordering Sets of Parallel Coordinates Plots to Highlight Differences in Clusters

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2022

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Sammelband
Publikationsstatus
Published

Erschienen in

BERNARD, Jürgen, ed., Marco ANGELINI, ed.. EuroVis Workshop on Visual Analytics (EuroVA). The Eurographics Association, 2022, pp. 55-59. ISBN 978-3-03868-183-0. Available under: doi: 10.2312/eurova.20221080

Zusammenfassung

Visualizing high-dimensional (HD) data is a key challenge for data scientists. The importance of this challenge is to properly map data properties, e.g., patterns, outliers, and correlations, from a HD data space onto a visualization. Parallel coordinate plots (PCPs) are a common way to do this. However, a PCP visualization can be arranged in several ways by reordering its axes, which may lead to different visual representations. Many methods have been developed with the aim of evaluating the quality of reorderings of given PCP view. A high-dimensional data set can be divided into multiple classes, and being able to identify differences between the classes is important. Then, besides overlaying the groups in a single PCP, we can show the different groups in individual PCPs in a small multiple fashion. This raises the problem of jointly reordering sets of PCPs to create meaningful reorderings of the set of plots. We propose a joint reordering strategy, based on maximizing the pairwise visual difference in PCPs, such as to support their contrastive comparison. We present an implementation and an evaluation of the reordering strategy to assess the effectiveness of the method. The approach shows feasible in bringing out pairwise difference in PCP plots and hence support comparison of grouped data.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690KOH, Elliot, Michael BLUMENSCHEIN, Lin SHAO, Tobias SCHRECK, 2022. Reordering Sets of Parallel Coordinates Plots to Highlight Differences in Clusters. In: BERNARD, Jürgen, ed., Marco ANGELINI, ed.. EuroVis Workshop on Visual Analytics (EuroVA). The Eurographics Association, 2022, pp. 55-59. ISBN 978-3-03868-183-0. Available under: doi: 10.2312/eurova.20221080
BibTex
@incollection{Koh2022Reord-58544,
  year={2022},
  doi={10.2312/eurova.20221080},
  title={Reordering Sets of Parallel Coordinates Plots to Highlight Differences in Clusters},
  isbn={978-3-03868-183-0},
  publisher={The Eurographics Association},
  booktitle={EuroVis Workshop on Visual Analytics (EuroVA)},
  pages={55--59},
  editor={Bernard, Jürgen and Angelini, Marco},
  author={Koh, Elliot and Blumenschein, Michael and Shao, Lin and Schreck, Tobias}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/58544">
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-09-08T09:41:20Z</dc:date>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:creator>Koh, Elliot</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Schreck, Tobias</dc:creator>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/58544"/>
    <dc:contributor>Shao, Lin</dc:contributor>
    <dcterms:abstract xml:lang="eng">Visualizing high-dimensional (HD) data is a key challenge for data scientists. The importance of this challenge is to properly map data properties, e.g., patterns, outliers, and correlations, from a HD data space onto a visualization. Parallel coordinate plots (PCPs) are a common way to do this. However, a PCP visualization can be arranged in several ways by reordering its axes, which may lead to different visual representations. Many methods have been developed with the aim of evaluating the quality of reorderings of given PCP view. A high-dimensional data set can be divided into multiple classes, and being able to identify differences between the classes is important. Then, besides overlaying the groups in a single PCP, we can show the different groups in individual PCPs in a small multiple fashion. This raises the problem of jointly reordering sets of PCPs to create meaningful reorderings of the set of plots. We propose a joint reordering strategy, based on maximizing the pairwise visual difference in PCPs, such as to support their contrastive comparison. We present an implementation and an evaluation of the reordering strategy to assess the effectiveness of the method. The approach shows feasible in bringing out pairwise difference in PCP plots and hence support comparison of grouped data.</dcterms:abstract>
    <dc:rights>terms-of-use</dc:rights>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:title>Reordering Sets of Parallel Coordinates Plots to Highlight Differences in Clusters</dcterms:title>
    <dc:contributor>Blumenschein, Michael</dc:contributor>
    <dc:contributor>Koh, Elliot</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>Schreck, Tobias</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-09-08T09:41:20Z</dcterms:available>
    <dc:language>eng</dc:language>
    <dc:creator>Blumenschein, Michael</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:issued>2022</dcterms:issued>
    <dc:creator>Shao, Lin</dc:creator>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Unbekannt
Diese Publikation teilen