Publikation:

UHD-IQA Benchmark Database : Pushing the Boundaries of Blind Photo Quality Assessment

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2025

Autor:innen

Agnolucci, Lorenzo
Iso, Daisuke

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

DEL BUE, Alessio, Hrsg., Cristian CANTON, Hrsg., Jordi PONT-TUSET, Hrsg., Tatiana TOMMASI, Hrsg.. Computer vision - ECCV 2024 Workshops : Milan, Italy, September 29-October 4, 2024, proceedings, part IX. Cham: Springer, 2025, S. 467-482. Lecture notes in computer science. 15631. ISSN 0302-9743. eISSN 1611-3349. ISBN 978-3-031-91837-7. Verfügbar unter: doi: 10.1007/978-3-031-91838-4_28

Zusammenfassung

We introduce a novel Image Quality Assessment (IQA) dataset comprising 6073 UHD-1 (4K) images, annotated at a fixed width of 3840 pixels. Contrary to existing No-Reference (NR) IQA datasets, ours focuses on highly aesthetic photos of high technical quality, filling a gap in the literature. The images, carefully curated to exclude synthetic content, are sufficiently diverse to train general NR-IQA models. Importantly, the dataset is annotated with perceptual quality ratings obtained through a crowdsourcing study. Ten expert raters, comprising photographers and graphics artists, assessed each image at least twice in multiple sessions spanning several days, resulting in 20 highly reliable ratings per image. Annotators were rigorously selected based on several metrics, including self-consistency, to ensure their reliability. The dataset includes rich metadata with user and machine-generated tags from over 5,000 categories and popularity indicators such as favorites, likes, downloads, and views. With its unique characteristics, such as its focus on high-quality images, reliable crowdsourced annotations, and high annotation resolution, our dataset opens up new opportunities for advancing perceptual image quality assessment research and developing practical NR-IQA models that apply to modern photos. Our dataset is available at https://database.mmsp-kn.de/uhd-iqa-benchmark-database.html.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

ECCV 2024 : European Conference on Computer Vision, 29. Sept. 2024 - 4. Okt. 2024, Milan, Italy
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690HOSU, Vlad, Lorenzo AGNOLUCCI, Oliver WIEDEMANN, Daisuke ISO, Dietmar SAUPE, 2025. UHD-IQA Benchmark Database : Pushing the Boundaries of Blind Photo Quality Assessment. ECCV 2024 : European Conference on Computer Vision. Milan, Italy, 29. Sept. 2024 - 4. Okt. 2024. In: DEL BUE, Alessio, Hrsg., Cristian CANTON, Hrsg., Jordi PONT-TUSET, Hrsg., Tatiana TOMMASI, Hrsg.. Computer vision - ECCV 2024 Workshops : Milan, Italy, September 29-October 4, 2024, proceedings, part IX. Cham: Springer, 2025, S. 467-482. Lecture notes in computer science. 15631. ISSN 0302-9743. eISSN 1611-3349. ISBN 978-3-031-91837-7. Verfügbar unter: doi: 10.1007/978-3-031-91838-4_28
BibTex
@inproceedings{Hosu2025UHDIQ-75099,
  title={UHD-IQA Benchmark Database : Pushing the Boundaries of Blind Photo Quality Assessment},
  year={2025},
  doi={10.1007/978-3-031-91838-4_28},
  number={15631},
  isbn={978-3-031-91837-7},
  issn={0302-9743},
  address={Cham},
  publisher={Springer},
  series={Lecture notes in computer science},
  booktitle={Computer vision - ECCV 2024 Workshops : Milan, Italy, September 29-October 4, 2024, proceedings, part IX},
  pages={467--482},
  editor={Del Bue, Alessio and Canton, Cristian and Pont-Tuset, Jordi and Tommasi, Tatiana},
  author={Hosu, Vlad and Agnolucci, Lorenzo and Wiedemann, Oliver and Iso, Daisuke and Saupe, Dietmar}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/75099">
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-11-04T13:39:00Z</dcterms:available>
    <dc:contributor>Agnolucci, Lorenzo</dc:contributor>
    <dc:contributor>Hosu, Vlad</dc:contributor>
    <dc:creator>Agnolucci, Lorenzo</dc:creator>
    <dcterms:title>UHD-IQA Benchmark Database : Pushing the Boundaries of Blind Photo Quality Assessment</dcterms:title>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>Iso, Daisuke</dc:contributor>
    <dc:contributor>Wiedemann, Oliver</dc:contributor>
    <dc:creator>Iso, Daisuke</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:language>eng</dc:language>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>Saupe, Dietmar</dc:contributor>
    <dc:creator>Hosu, Vlad</dc:creator>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/75099"/>
    <dcterms:issued>2025</dcterms:issued>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-11-04T13:39:00Z</dc:date>
    <dc:creator>Wiedemann, Oliver</dc:creator>
    <dcterms:abstract>We introduce a novel Image Quality Assessment (IQA) dataset comprising 6073 UHD-1 (4K) images, annotated at a fixed width of 3840 pixels. Contrary to existing No-Reference (NR) IQA datasets, ours focuses on highly aesthetic photos of high technical quality, filling a gap in the literature. The images, carefully curated to exclude synthetic content, are sufficiently diverse to train general NR-IQA models. Importantly, the dataset is annotated with perceptual quality ratings obtained through a crowdsourcing study. Ten expert raters, comprising photographers and graphics artists, assessed each image at least twice in multiple sessions spanning several days, resulting in 20 highly reliable ratings per image. Annotators were rigorously selected based on several metrics, including self-consistency, to ensure their reliability. The dataset includes rich metadata with user and machine-generated tags from over 5,000 categories and popularity indicators such as favorites, likes, downloads, and views. With its unique characteristics, such as its focus on high-quality images, reliable crowdsourced annotations, and high annotation resolution, our dataset opens up new opportunities for advancing perceptual image quality assessment research and developing practical NR-IQA models that apply to modern photos. Our dataset is available at https://database.mmsp-kn.de/uhd-iqa-benchmark-database.html.</dcterms:abstract>
    <dc:creator>Saupe, Dietmar</dc:creator>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen