Publikation: Interactive Dense Pixel Visualizations for Time Series and Model Attribution Explanations
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
The field of Explainable Artificial Intelligence (XAI) for Deep Neural Network models develops significantly, offering numerous techniques to extract explanations from models. However, evaluating explanations is often not trivial, and differences in applied metrics can be subtle, especially with non-intelligible data. Thus, there is a need for visualizations tailored to explore explanations for domains with such data, e.g., time series. We propose DAVOTS, an interactive visual analytics approach to explore raw time series data, activations of neural networks, and attributions in a dense-pixel visualization to gain insights into the data, models' decisions, and explanations. To further support users in exploring large datasets, we apply clustering approaches to the visualized data domains to highlight groups and present ordering strategies for individual and combined data exploration to facilitate finding patterns. We visualize a CNN trained on the FordA dataset to demonstrate the approach.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
SCHLEGEL, Udo, Daniel A. KEIM, 2023. Interactive Dense Pixel Visualizations for Time Series and Model Attribution Explanations. Machine Learning Methods in Visualisation for Big Data 2023 (MLVis 2023). Leipzig, 12. Juni 2023. In: ARCHAMBAULT, Daniel, Hrsg., Ian NABNEY, Hrsg., Jaakko PELTONEN, Hrsg.. Machine Learning Methods in Visualisation for Big Data. Eindhoven: The Eurographics Association, 2023. ISBN 978-3-03868-224-0. Verfügbar unter: doi: 10.2312/mlvis.20231113BibTex
@inproceedings{Schlegel2023Inter-67522, year={2023}, doi={10.2312/mlvis.20231113}, title={Interactive Dense Pixel Visualizations for Time Series and Model Attribution Explanations}, isbn={978-3-03868-224-0}, publisher={The Eurographics Association}, address={Eindhoven}, booktitle={Machine Learning Methods in Visualisation for Big Data}, editor={Archambault, Daniel and Nabney, Ian and Peltonen, Jaakko}, author={Schlegel, Udo and Keim, Daniel A.} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/67522"> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/67522/1/Schlegel_2-9gt38k1euxha3.pdf"/> <dcterms:abstract>The field of Explainable Artificial Intelligence (XAI) for Deep Neural Network models develops significantly, offering numerous techniques to extract explanations from models. However, evaluating explanations is often not trivial, and differences in applied metrics can be subtle, especially with non-intelligible data. Thus, there is a need for visualizations tailored to explore explanations for domains with such data, e.g., time series. We propose DAVOTS, an interactive visual analytics approach to explore raw time series data, activations of neural networks, and attributions in a dense-pixel visualization to gain insights into the data, models' decisions, and explanations. To further support users in exploring large datasets, we apply clustering approaches to the visualized data domains to highlight groups and present ordering strategies for individual and combined data exploration to facilitate finding patterns. We visualize a CNN trained on the FordA dataset to demonstrate the approach.</dcterms:abstract> <dc:contributor>Schlegel, Udo</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-08-07T15:11:59Z</dcterms:available> <dc:creator>Keim, Daniel A.</dc:creator> <dc:language>eng</dc:language> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/67522/1/Schlegel_2-9gt38k1euxha3.pdf"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:issued>2023</dcterms:issued> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/67522"/> <dc:creator>Schlegel, Udo</dc:creator> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:contributor>Keim, Daniel A.</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-08-07T15:11:59Z</dc:date> <dc:rights>terms-of-use</dc:rights> <dcterms:title>Interactive Dense Pixel Visualizations for Time Series and Model Attribution Explanations</dcterms:title> </rdf:Description> </rdf:RDF>