Publikation:

Just a very expensive breathing training? : Risk of respiratory artefacts in functional connectivity-based real-time fMRI neurofeedback

Lade...
Vorschaubild

Dateien

Weiss_2-9hifc3603ta01.pdf
Weiss_2-9hifc3603ta01.pdfGröße: 730.2 KBDownloads: 319

Datum

2020

Autor:innen

Weiss, Franziska
Zamoscik, Vera
Halli, Patrick
Kirsch, Peter
Gerchen, Martin Fungisai

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Link zur Lizenz

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Hybrid
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

NeuroImage. Elsevier. 2020, 210, 116580. ISSN 1053-8119. eISSN 1095-9572. Available under: doi: 10.1016/j.neuroimage.2020.116580

Zusammenfassung

Real-time functional magnetic resonance imaging neurofeedback (rtfMRI NFB) is a promising method for targeted regulation of pathological brain processes in mental disorders. But most NFB approaches so far have used relatively restricted regional activation as a target, which might not address the complexity of the underlying network changes. Aiming towards advancing novel treatment tools for disorders like schizophrenia, we developed a large-scale network functional connectivity-based rtfMRI NFB approach targeting dorsolateral prefrontal cortex and anterior cingulate cortex connectivity with the striatum. In a double-blind randomized yoke-controlled single-session feasibility study with N ​= ​38 healthy controls, we identified strong associations between our connectivity estimates and physiological parameters reflecting the rate and regularity of breathing. These undesired artefacts are especially detrimental in rtfMRI NFB, where the same data serves as an online feedback signal and offline analysis target. To evaluate ways to control for the identified respiratory artefacts, we compared model-based physiological nuisance regression and global signal regression (GSR) and found that GSR was the most effective method in our data. Our results strongly emphasize the need to control for physiological artefacts in connectivity-based rtfMRI NFB approaches and suggest that GSR might be a useful method for online data correction for respiratory artefacts.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
150 Psychologie

Schlagwörter

Physiological artefacts Frontostriatal functional connectivity fMRI neurofeedback, Large-scale networks, Global signal regression, Schizophrenia, TAPAS, PhysIO toolbox

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690WEISS, Franziska, Vera ZAMOSCIK, Stephanie N. L. SCHMIDT, Patrick HALLI, Peter KIRSCH, Martin Fungisai GERCHEN, 2020. Just a very expensive breathing training? : Risk of respiratory artefacts in functional connectivity-based real-time fMRI neurofeedback. In: NeuroImage. Elsevier. 2020, 210, 116580. ISSN 1053-8119. eISSN 1095-9572. Available under: doi: 10.1016/j.neuroimage.2020.116580
BibTex
@article{Weiss2020-04-15expen-49196,
  year={2020},
  doi={10.1016/j.neuroimage.2020.116580},
  title={Just a very expensive breathing training? : Risk of respiratory artefacts in functional connectivity-based real-time fMRI neurofeedback},
  volume={210},
  issn={1053-8119},
  journal={NeuroImage},
  author={Weiss, Franziska and Zamoscik, Vera and Schmidt, Stephanie N. L. and Halli, Patrick and Kirsch, Peter and Gerchen, Martin Fungisai},
  note={Article Number: 116580}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/49196">
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43"/>
    <dc:contributor>Gerchen, Martin Fungisai</dc:contributor>
    <dcterms:title>Just a very expensive breathing training? : Risk of respiratory artefacts in functional connectivity-based real-time fMRI neurofeedback</dcterms:title>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/49196/1/Weiss_2-9hifc3603ta01.pdf"/>
    <dc:creator>Schmidt, Stephanie N. L.</dc:creator>
    <dc:contributor>Kirsch, Peter</dc:contributor>
    <dc:contributor>Weiss, Franziska</dc:contributor>
    <dc:creator>Zamoscik, Vera</dc:creator>
    <dc:contributor>Schmidt, Stephanie N. L.</dc:contributor>
    <dc:creator>Gerchen, Martin Fungisai</dc:creator>
    <dc:creator>Halli, Patrick</dc:creator>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/49196/1/Weiss_2-9hifc3603ta01.pdf"/>
    <dc:creator>Kirsch, Peter</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:contributor>Zamoscik, Vera</dc:contributor>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-04-03T09:49:27Z</dcterms:available>
    <dc:contributor>Halli, Patrick</dc:contributor>
    <dc:creator>Weiss, Franziska</dc:creator>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc-nd/4.0/"/>
    <dc:language>eng</dc:language>
    <dcterms:abstract xml:lang="eng">Real-time functional magnetic resonance imaging neurofeedback (rtfMRI NFB) is a promising method for targeted regulation of pathological brain processes in mental disorders. But most NFB approaches so far have used relatively restricted regional activation as a target, which might not address the complexity of the underlying network changes. Aiming towards advancing novel treatment tools for disorders like schizophrenia, we developed a large-scale network functional connectivity-based rtfMRI NFB approach targeting dorsolateral prefrontal cortex and anterior cingulate cortex connectivity with the striatum. In a double-blind randomized yoke-controlled single-session feasibility study with N ​= ​38 healthy controls, we identified strong associations between our connectivity estimates and physiological parameters reflecting the rate and regularity of breathing. These undesired artefacts are especially detrimental in rtfMRI NFB, where the same data serves as an online feedback signal and offline analysis target. To evaluate ways to control for the identified respiratory artefacts, we compared model-based physiological nuisance regression and global signal regression (GSR) and found that GSR was the most effective method in our data. Our results strongly emphasize the need to control for physiological artefacts in connectivity-based rtfMRI NFB approaches and suggest that GSR might be a useful method for online data correction for respiratory artefacts.</dcterms:abstract>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-04-03T09:49:27Z</dc:date>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43"/>
    <dc:rights>Attribution-NonCommercial-NoDerivatives 4.0 International</dc:rights>
    <dcterms:issued>2020-04-15</dcterms:issued>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/49196"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen