Publikation:

Secant varieties of toric varieties arising from simplicial complexes

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2020

Autor:innen

Khadam, M. Azeem
Zwiernik, Piotr

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Linear Algebra and its Applications. Elsevier. 2020, 588, pp. 428-457. ISSN 0024-3795. eISSN 1873-1856. Available under: doi: 10.1016/j.laa.2019.12.008

Zusammenfassung

Motivated by the study of the secant variety of the Segre-Veronese variety we propose a general framework to analyze properties of the secant varieties of toric embeddings of affine spaces defined by simplicial complexes. We prove that every such secant is toric, which gives a way to use combinatorial tools to study singularities. We focus on the Segre-Veronese variety for which we completely classify their secants that give Gorenstein or Q-Gorenstein varieties. We conclude providing the explicit description of the singular locus.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

Secant variety, Segre-Veronese embedding, Simplicial complex, Cumulants, Singular locus

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690KHADAM, M. Azeem, Mateusz MICHALEK, Piotr ZWIERNIK, 2020. Secant varieties of toric varieties arising from simplicial complexes. In: Linear Algebra and its Applications. Elsevier. 2020, 588, pp. 428-457. ISSN 0024-3795. eISSN 1873-1856. Available under: doi: 10.1016/j.laa.2019.12.008
BibTex
@article{Khadam2020Secan-52207,
  year={2020},
  doi={10.1016/j.laa.2019.12.008},
  title={Secant varieties of toric varieties arising from simplicial complexes},
  volume={588},
  issn={0024-3795},
  journal={Linear Algebra and its Applications},
  pages={428--457},
  author={Khadam, M. Azeem and Michalek, Mateusz and Zwiernik, Piotr}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52207">
    <dc:contributor>Khadam, M. Azeem</dc:contributor>
    <dc:creator>Khadam, M. Azeem</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:issued>2020</dcterms:issued>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-12-21T13:17:45Z</dcterms:available>
    <dc:contributor>Michalek, Mateusz</dc:contributor>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/52207"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:title>Secant varieties of toric varieties arising from simplicial complexes</dcterms:title>
    <dc:creator>Zwiernik, Piotr</dc:creator>
    <dcterms:abstract xml:lang="eng">Motivated by the study of the secant variety of the Segre-Veronese variety we propose a general framework to analyze properties of the secant varieties of toric embeddings of affine spaces defined by simplicial complexes. We prove that every such secant is toric, which gives a way to use combinatorial tools to study singularities. We focus on the Segre-Veronese variety for which we completely classify their secants that give Gorenstein or Q-Gorenstein varieties. We conclude providing the explicit description of the singular locus.</dcterms:abstract>
    <dc:language>eng</dc:language>
    <dc:contributor>Zwiernik, Piotr</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-12-21T13:17:45Z</dc:date>
    <dc:creator>Michalek, Mateusz</dc:creator>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen