Pattern Trails : Visual Analysis of Pattern Transitions in Subspaces

Lade...
Vorschaubild
Dateien
Jaeckle_2-9me9fwxo3v9j2.pdf
Jaeckle_2-9me9fwxo3v9j2.pdfGröße: 2.08 MBDownloads: 445
Datum
2017
Autor:innen
Behrisch, Michael
Keim, Daniel A.
Schreck, Tobias
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published
Erschienen in
IEEE Conference on Visual Analytics Science and Technology (VAST). 2017
Zusammenfassung

Subspace analysis methods have gained interest for identifying patterns in subspaces of high-dimensional data. Existing techniques allow to visualize and compare patterns in subspaces. However, many subspace analysis methods produce an abundant amount of patterns, which often remain redundant and are difficult to relate. Creating effective layouts for comparison of subspace patterns remains challenging. We introduce Pattern Trails, a novel approach for visually ordering and comparing subspace patterns. Central to our approach is the notion of pattern transitions as an interpretable structure imposed to order and compare patterns between subspaces. The basic idea is to visualize projections of subspaces side-by-side, and indicate changes between adjacent patterns in the subspaces by a linked representation, hence introducing pattern transitions. Our contributions comprise a systematization for how pairs of subspace patterns can be compared, and how changes can be interpreted in terms of pattern transitions. We also contribute a technique for visual subspace analysis based on a data-driven similarity measure between subspace representations. This measure is useful to order the patterns, and interactively group subspaces to reduce redundancy. We demonstrate the usefulness of our approach by application to several use cases, indicating that data can be meaningfully ordered and interpreted in terms of pattern transitions.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
004 Informatik
Schlagwörter
Multivariate Data, Pattern Transitions, Subspace Patterns, Projection Similarity
Konferenz
2017 IEEE Visualization Conference (VIS), 1. Okt. 2017 - 6. Okt. 2017, Phoenix, Arizona, USA
Rezension
undefined / . - undefined, undefined
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Datensätze
Zitieren
ISO 690JÄCKLE, Dominik, Michael BLUMENSCHEIN, Michael BEHRISCH, Daniel A. KEIM, Tobias SCHRECK, 2017. Pattern Trails : Visual Analysis of Pattern Transitions in Subspaces. 2017 IEEE Visualization Conference (VIS). Phoenix, Arizona, USA, 1. Okt. 2017 - 6. Okt. 2017. In: IEEE Conference on Visual Analytics Science and Technology (VAST). 2017
BibTex
@inproceedings{Jackle2017Patte-41758,
  year={2017},
  title={Pattern Trails : Visual Analysis of Pattern Transitions in Subspaces},
  booktitle={IEEE Conference on Visual Analytics Science and Technology (VAST)},
  author={Jäckle, Dominik and Blumenschein, Michael and Behrisch, Michael and Keim, Daniel A. and Schreck, Tobias}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41758">
    <dc:creator>Jäckle, Dominik</dc:creator>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:creator>Blumenschein, Michael</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-03-13T13:37:56Z</dcterms:available>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:contributor>Keim, Daniel A.</dc:contributor>
    <dc:contributor>Jäckle, Dominik</dc:contributor>
    <dc:creator>Keim, Daniel A.</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:issued>2017</dcterms:issued>
    <dcterms:title>Pattern Trails : Visual Analysis of Pattern Transitions in Subspaces</dcterms:title>
    <dc:contributor>Behrisch, Michael</dc:contributor>
    <dc:rights>terms-of-use</dc:rights>
    <dc:creator>Behrisch, Michael</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-03-13T13:37:56Z</dc:date>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/41758/1/Jaeckle_2-9me9fwxo3v9j2.pdf"/>
    <dc:contributor>Blumenschein, Michael</dc:contributor>
    <dcterms:abstract xml:lang="eng">Subspace analysis methods have gained interest for identifying patterns in subspaces of high-dimensional data. Existing techniques allow to visualize and compare patterns in subspaces. However, many subspace analysis methods produce an abundant amount of patterns, which often remain redundant and are difficult to relate. Creating effective layouts for comparison of subspace patterns remains challenging. We introduce Pattern Trails, a novel approach for visually ordering and comparing subspace patterns. Central to our approach is the notion of pattern transitions as an interpretable structure imposed to order and compare patterns between subspaces. The basic idea is to visualize projections of subspaces side-by-side, and indicate changes between adjacent patterns in the subspaces by a linked representation, hence introducing pattern transitions. Our contributions comprise a systematization for how pairs of subspace patterns can be compared, and how changes can be interpreted in terms of pattern transitions. We also contribute a technique for visual subspace analysis based on a data-driven similarity measure between subspace representations. This measure is useful to order the patterns, and interactively group subspaces to reduce redundancy. We demonstrate the usefulness of our approach by application to several use cases, indicating that data can be meaningfully ordered and interpreted in terms of pattern transitions.</dcterms:abstract>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Schreck, Tobias</dc:creator>
    <dc:language>eng</dc:language>
    <dc:contributor>Schreck, Tobias</dc:contributor>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/41758"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/41758/1/Jaeckle_2-9me9fwxo3v9j2.pdf"/>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen