Publikation:

Brownian Dynamics Simulations of Liquid Glass

Lade...
Vorschaubild

Dateien

Alhissi_2-9qwqn93nuwco0.pdf
Alhissi_2-9qwqn93nuwco0.pdfGröße: 9.48 MBDownloads: 52

Datum

2024

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz
Scientific Compute Cluster

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Dissertation
Publikationsstatus
Published

Erschienen in

Zusammenfassung

Fluids of anisotropic particles have been under research for several decades as they give rise to some phase equilibria which do not exist in the spherical constituent fluids. Researchers usually concentrate on spherical interactions because their rotational symmetry is always preserved. However, the interactions in real fluids in nature and experiment are not completely spherical. Therefore, there is always a need to have insight on the structures and dynamics of fluids composed of anisotropic particles. Recently, a novel nonequilibrium glassy state was observed in experiment on hard-ellipsoid colloids which was a confirmation of the prediction of the Mode Coupling Theory (MCT) for the glass transition when solved for anisotropic fluids. This glassy state is now known as liquid glass (LG). In liquid glass, the centers of masses of the ellipsoids in the fluid can move freely while their rotation dynamics is arrested and thus cannot equilibrate. Using Brownian Dynamics (BD) simulations for ellipsoidal colloids, we could find liquid glass in simulations and compare its structures and dynamics to the experimental liquid glass. We also analyzed the liquid-glass correlation functions in simulations using the MCT universal solutions for ellipsoidal fluid. Moreover, we examine using BD simulations the translation-rotation (TR) decoupling in ellipsoidal colloids predicted by Perrin theory’s for diffusion in anisotropic fluid. The BD simulations were carried out for ellipsoids with different aspect ratios at low densities. The results of simulations agree with Perrin’s theoretical prediction. The TR decoupling is observed after the orientation motions of ellipsoids relax. On the other hand, the implementation of the double well (DW) potential as a model for the activation processes was investigated. We found that the large-timescale dynamics does not follow the power law relaxation predicted with MCT.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
530 Physik

Schlagwörter

condensed matter physics, statistical physics, glass, molecular simulations

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690ALHISSI, Mohammed, 2024. Brownian Dynamics Simulations of Liquid Glass [Dissertation]. Konstanz: Universität Konstanz
BibTex
@phdthesis{Alhissi2024-05-21Brown-70121,
  year={2024},
  doi={10.1063/5.0196599},
  title={Brownian Dynamics Simulations of Liquid Glass},
  author={Alhissi, Mohammed},
  address={Konstanz},
  school={Universität Konstanz}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/70121">
    <dc:creator>Alhissi, Mohammed</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:language>eng</dc:language>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/70121/4/Alhissi_2-9qwqn93nuwco0.pdf"/>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/70121/4/Alhissi_2-9qwqn93nuwco0.pdf"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-06-13T08:33:04Z</dcterms:available>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/>
    <dc:contributor>Alhissi, Mohammed</dc:contributor>
    <dcterms:title>Brownian Dynamics Simulations of Liquid Glass</dcterms:title>
    <dcterms:issued>2024-05-21</dcterms:issued>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/70121"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-06-13T08:33:04Z</dc:date>
    <dcterms:abstract>Fluids of anisotropic particles have been under research for several decades as they give rise to some phase equilibria which do not exist in the spherical constituent fluids. Researchers usually concentrate on spherical interactions because their rotational symmetry is always preserved. However, the interactions in real fluids in nature and experiment are not completely spherical. Therefore, there is always a need to have insight on the structures and dynamics of fluids composed of anisotropic particles. Recently, a novel nonequilibrium glassy state was observed in experiment on hard-ellipsoid colloids which was a confirmation of the prediction of the Mode Coupling Theory (MCT) for the glass transition when solved for anisotropic fluids. This glassy state is now known as liquid glass (LG). In liquid glass, the centers of masses of the ellipsoids in the fluid can move freely while their rotation dynamics is arrested and thus cannot equilibrate. Using Brownian Dynamics (BD) simulations for ellipsoidal colloids, we could find liquid glass in simulations and compare its structures and dynamics to the experimental liquid glass. We also analyzed the liquid-glass correlation functions in simulations using the MCT universal solutions for ellipsoidal fluid. Moreover, we examine using BD simulations the translation-rotation (TR) decoupling in ellipsoidal colloids predicted by Perrin theory’s for diffusion in anisotropic fluid. The BD simulations were carried out for ellipsoids with different aspect ratios at low densities. The results of simulations agree with Perrin’s theoretical prediction. The TR decoupling is observed after the orientation motions of ellipsoids relax. On the other hand, the implementation of the double well (DW) potential as a model for the activation processes was investigated. We found that the large-timescale dynamics does not follow the power law relaxation predicted with MCT.</dcterms:abstract>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

May 21, 2024
Hochschulschriftenvermerk
Konstanz, Univ., Diss., 2024
Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen