Visual Analytics Techniques for Large Multi-Attribute Time Series Data
Visual Analytics Techniques for Large Multi-Attribute Time Series Data
Loading...
Date
2008
Authors
Editors
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
URI (citable link)
DOI (citable link)
International patent number
Link to the license
EU project number
Project
Open Access publication
Collections
Title in another language
Publication type
Contribution to a conference collection
Publication status
Published in
Visualization and Data Analysis 2008 / Börner, Katy et al. (ed.). - SPIE, 2008. - (SPIE Proceedings ; 6809). - pp. 680908-680908-10
Abstract
Time series data commonly occur when variables are monitored over time. Many real-world applications involve the comparison of long time series across multiple variables (multi-attributes). Often business people want to compare this year s monthly sales with last year s sales to make decisions. Data warehouse administrators (DBAs) want to know their daily data loading job performance. DBAs need to detect the outliers early enough to act upon them. In this paper, two new visual analytic techniques are introduced: The cell-based Visual Time Series highlight significant changes over time within complex data sets and the new Visual Content Query facilitates finding the contents and histories of exceptions, which leads to root cause identification. We show examples of using these techniques to mine customer credit card fraud data to illustrate the wide applicability and usefulness of these techniques.
Summary in another language
Subject (DDC)
004 Computer Science
Keywords
visual analytics,multi-attribute data,time series,visual content query,contents and relationships
Conference
Electronic Imaging 2008, San Jose, CA
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690
HAO, Ming C., Umeshwar DAYAL, Daniel A. KEIM, 2008. Visual Analytics Techniques for Large Multi-Attribute Time Series Data. Electronic Imaging 2008. San Jose, CA. In: BÖRNER, Katy, ed. and others. Visualization and Data Analysis 2008. SPIE, pp. 680908-680908-10. Available under: doi: 10.1117/12.768568BibTex
@inproceedings{Hao2008-01-27Visua-5447, year={2008}, doi={10.1117/12.768568}, title={Visual Analytics Techniques for Large Multi-Attribute Time Series Data}, number={6809}, publisher={SPIE}, series={SPIE Proceedings}, booktitle={Visualization and Data Analysis 2008}, pages={680908--680908-10}, editor={Börner, Katy}, author={Hao, Ming C. and Dayal, Umeshwar and Keim, Daniel A.} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/5447"> <dc:contributor>Hao, Ming C.</dc:contributor> <dcterms:issued>2008-01-27</dcterms:issued> <dc:creator>Dayal, Umeshwar</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:rights>Attribution-NonCommercial-NoDerivs 2.0 Generic</dc:rights> <dc:contributor>Dayal, Umeshwar</dc:contributor> <dc:creator>Hao, Ming C.</dc:creator> <dc:contributor>Keim, Daniel A.</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T15:55:30Z</dcterms:available> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5447/1/EI108_EI107_32Submit.pdf"/> <dc:language>eng</dc:language> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/5447"/> <dc:creator>Keim, Daniel A.</dc:creator> <dcterms:abstract xml:lang="eng">Time series data commonly occur when variables are monitored over time. Many real-world applications involve the comparison of long time series across multiple variables (multi-attributes). Often business people want to compare this year s monthly sales with last year s sales to make decisions. Data warehouse administrators (DBAs) want to know their daily data loading job performance. DBAs need to detect the outliers early enough to act upon them. In this paper, two new visual analytic techniques are introduced: The cell-based Visual Time Series highlight significant changes over time within complex data sets and the new Visual Content Query facilitates finding the contents and histories of exceptions, which leads to root cause identification. We show examples of using these techniques to mine customer credit card fraud data to illustrate the wide applicability and usefulness of these techniques.</dcterms:abstract> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc-nd/2.0/"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5447/1/EI108_EI107_32Submit.pdf"/> <dcterms:title>Visual Analytics Techniques for Large Multi-Attribute Time Series Data</dcterms:title> <dc:format>application/pdf</dc:format> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T15:55:30Z</dc:date> <dcterms:bibliographicCitation>First publ. in: Visualization and Data Analysis / ed. Katy Börner ... - Bellingham: SPIE, 2008</dcterms:bibliographicCitation> </rdf:Description> </rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Examination date of dissertation
Method of financing
Comment on publication
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
Yes