Visual Analytics Techniques for Large Multi-Attribute Time Series Data

Lade...
Vorschaubild
Dateien
EI108_EI107_32Submit.pdf
EI108_EI107_32Submit.pdfGröße: 1.93 MBDownloads: 370
Datum
2008
Autor:innen
Hao, Ming C.
Dayal, Umeshwar
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published
Erschienen in
BÖRNER, Katy, ed. and others. Visualization and Data Analysis 2008. SPIE, 2008, pp. 680908-680908-10. SPIE Proceedings. 6809. Available under: doi: 10.1117/12.768568
Zusammenfassung

Time series data commonly occur when variables are monitored over time. Many real-world applications involve the comparison of long time series across multiple variables (multi-attributes). Often business people want to compare this year s monthly sales with last year s sales to make decisions. Data warehouse administrators (DBAs) want to know their daily data loading job performance. DBAs need to detect the outliers early enough to act upon them. In this paper, two new visual analytic techniques are introduced: The cell-based Visual Time Series highlight significant changes over time within complex data sets and the new Visual Content Query facilitates finding the contents and histories of exceptions, which leads to root cause identification. We show examples of using these techniques to mine customer credit card fraud data to illustrate the wide applicability and usefulness of these techniques.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
004 Informatik
Schlagwörter
visual analytics, multi-attribute data, time series, visual content query, contents and relationships
Konferenz
Electronic Imaging 2008, San Jose, CA
Rezension
undefined / . - undefined, undefined
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Datensätze
Zitieren
ISO 690HAO, Ming C., Umeshwar DAYAL, Daniel A. KEIM, 2008. Visual Analytics Techniques for Large Multi-Attribute Time Series Data. Electronic Imaging 2008. San Jose, CA. In: BÖRNER, Katy, ed. and others. Visualization and Data Analysis 2008. SPIE, 2008, pp. 680908-680908-10. SPIE Proceedings. 6809. Available under: doi: 10.1117/12.768568
BibTex
@inproceedings{Hao2008-01-27Visua-5447,
  year={2008},
  doi={10.1117/12.768568},
  title={Visual Analytics Techniques for Large Multi-Attribute Time Series Data},
  number={6809},
  publisher={SPIE},
  series={SPIE Proceedings},
  booktitle={Visualization and Data Analysis 2008},
  pages={680908--680908-10},
  editor={Börner, Katy},
  author={Hao, Ming C. and Dayal, Umeshwar and Keim, Daniel A.}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/5447">
    <dc:contributor>Hao, Ming C.</dc:contributor>
    <dcterms:issued>2008-01-27</dcterms:issued>
    <dc:creator>Dayal, Umeshwar</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:rights>Attribution-NonCommercial-NoDerivs 2.0 Generic</dc:rights>
    <dc:contributor>Dayal, Umeshwar</dc:contributor>
    <dc:creator>Hao, Ming C.</dc:creator>
    <dc:contributor>Keim, Daniel A.</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T15:55:30Z</dcterms:available>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5447/1/EI108_EI107_32Submit.pdf"/>
    <dc:language>eng</dc:language>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/5447"/>
    <dc:creator>Keim, Daniel A.</dc:creator>
    <dcterms:abstract xml:lang="eng">Time series data commonly occur when variables are monitored over time. Many real-world applications involve the comparison of long time series across multiple variables (multi-attributes). Often business people want to compare this year s monthly sales with last year s sales to make decisions. Data warehouse administrators (DBAs) want to know their daily data loading job performance. DBAs need to detect the outliers early enough to act upon them. In this paper, two new visual analytic techniques are introduced: The cell-based Visual Time Series highlight significant changes over time within complex data sets and the new Visual Content Query facilitates finding the contents and histories of exceptions, which leads to root cause identification. We show examples of using these techniques to mine customer credit card fraud data to illustrate the wide applicability and usefulness of these techniques.</dcterms:abstract>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc-nd/2.0/"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5447/1/EI108_EI107_32Submit.pdf"/>
    <dcterms:title>Visual Analytics Techniques for Large Multi-Attribute Time Series Data</dcterms:title>
    <dc:format>application/pdf</dc:format>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T15:55:30Z</dc:date>
    <dcterms:bibliographicCitation>First publ. in: Visualization and Data Analysis / ed. Katy Börner ... - Bellingham: SPIE, 2008</dcterms:bibliographicCitation>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen