Visual Analytics Techniques for Large Multi-Attribute Time Series Data
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Time series data commonly occur when variables are monitored over time. Many real-world applications involve the comparison of long time series across multiple variables (multi-attributes). Often business people want to compare this year s monthly sales with last year s sales to make decisions. Data warehouse administrators (DBAs) want to know their daily data loading job performance. DBAs need to detect the outliers early enough to act upon them. In this paper, two new visual analytic techniques are introduced: The cell-based Visual Time Series highlight significant changes over time within complex data sets and the new Visual Content Query facilitates finding the contents and histories of exceptions, which leads to root cause identification. We show examples of using these techniques to mine customer credit card fraud data to illustrate the wide applicability and usefulness of these techniques.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
HAO, Ming C., Umeshwar DAYAL, Daniel A. KEIM, 2008. Visual Analytics Techniques for Large Multi-Attribute Time Series Data. Electronic Imaging 2008. San Jose, CA. In: BÖRNER, Katy, ed. and others. Visualization and Data Analysis 2008. SPIE, 2008, pp. 680908-680908-10. SPIE Proceedings. 6809. Available under: doi: 10.1117/12.768568BibTex
@inproceedings{Hao2008-01-27Visua-5447, year={2008}, doi={10.1117/12.768568}, title={Visual Analytics Techniques for Large Multi-Attribute Time Series Data}, number={6809}, publisher={SPIE}, series={SPIE Proceedings}, booktitle={Visualization and Data Analysis 2008}, pages={680908--680908-10}, editor={Börner, Katy}, author={Hao, Ming C. and Dayal, Umeshwar and Keim, Daniel A.} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/5447"> <dc:contributor>Hao, Ming C.</dc:contributor> <dcterms:issued>2008-01-27</dcterms:issued> <dc:creator>Dayal, Umeshwar</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:rights>Attribution-NonCommercial-NoDerivs 2.0 Generic</dc:rights> <dc:contributor>Dayal, Umeshwar</dc:contributor> <dc:creator>Hao, Ming C.</dc:creator> <dc:contributor>Keim, Daniel A.</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T15:55:30Z</dcterms:available> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5447/1/EI108_EI107_32Submit.pdf"/> <dc:language>eng</dc:language> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/5447"/> <dc:creator>Keim, Daniel A.</dc:creator> <dcterms:abstract xml:lang="eng">Time series data commonly occur when variables are monitored over time. Many real-world applications involve the comparison of long time series across multiple variables (multi-attributes). Often business people want to compare this year s monthly sales with last year s sales to make decisions. Data warehouse administrators (DBAs) want to know their daily data loading job performance. DBAs need to detect the outliers early enough to act upon them. In this paper, two new visual analytic techniques are introduced: The cell-based Visual Time Series highlight significant changes over time within complex data sets and the new Visual Content Query facilitates finding the contents and histories of exceptions, which leads to root cause identification. We show examples of using these techniques to mine customer credit card fraud data to illustrate the wide applicability and usefulness of these techniques.</dcterms:abstract> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc-nd/2.0/"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5447/1/EI108_EI107_32Submit.pdf"/> <dcterms:title>Visual Analytics Techniques for Large Multi-Attribute Time Series Data</dcterms:title> <dc:format>application/pdf</dc:format> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T15:55:30Z</dc:date> <dcterms:bibliographicCitation>First publ. in: Visualization and Data Analysis / ed. Katy Börner ... - Bellingham: SPIE, 2008</dcterms:bibliographicCitation> </rdf:Description> </rdf:RDF>