Publikation:

Secondary and tertiary structure elasticity of titin Z1Z2 and a titin chain model

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2007

Autor:innen

Lee, Eric H
Hsin, Jen
Schulten, Klaus

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Biophysical journal. 2007, 93(5), pp. 1719-1735. ISSN 0006-3495. eISSN 1542-0086. Available under: doi: 10.1529/biophysj.107.105528

Zusammenfassung

The giant protein titin, which is responsible for passive elasticity in muscle fibers, is built from approximately 300 regular immunoglobulin-like (Ig) domains and FN-III repeats. While the soft elasticity derived from its entropic regions, as well as the stiff mechanical resistance derived from the unfolding of the secondary structure elements of Ig- and FN-III domains have been studied extensively, less is known about the mechanical elasticity stemming from the orientation of neighboring domains relative to each other. Here we address the dynamics and energetics of interdomain arrangement of two adjacent Ig-domains of titin, Z1, and Z2, using molecular dynamics (MD) simulations. The simulations reveal conformational flexibility, due to the domain-domain geometry, that lends an intermediate force elasticity to titin. We employ adaptive biasing force MD simulations to calculate the energy required to bend the Z1Z2 tandem open to identify energetically feasible interdomain arrangements of the Z1 and Z2 domains. The finding is cast into a stochastic model for Z1Z2 interdomain elasticity that is generalized to a multiple domain chain replicating many Z1Z2-like units and representing a long titin segment. The elastic properties of this chain suggest that titin derives so-called tertiary structure elasticity from bending and twisting of its domains. Finally, we employ steered molecular dynamics simulations to stretch individual Z1 and Z2 domains and characterize the so-called secondary structure elasticity of the two domains. Our study suggests that titin's overall elastic response at weak force stems from a soft entropic spring behavior (not described here), from tertiary structure elasticity with an elastic spring constant of approximately 0.001-1 pN/A and, at strong forces, from secondary structure elasticity.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
570 Biowissenschaften, Biologie

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690LEE, Eric H, Jen HSIN, Olga MAYANS, Klaus SCHULTEN, 2007. Secondary and tertiary structure elasticity of titin Z1Z2 and a titin chain model. In: Biophysical journal. 2007, 93(5), pp. 1719-1735. ISSN 0006-3495. eISSN 1542-0086. Available under: doi: 10.1529/biophysj.107.105528
BibTex
@article{Lee2007Secon-42015,
  year={2007},
  doi={10.1529/biophysj.107.105528},
  title={Secondary and tertiary structure elasticity of titin Z1Z2 and a titin chain model},
  number={5},
  volume={93},
  issn={0006-3495},
  journal={Biophysical journal},
  pages={1719--1735},
  author={Lee, Eric H and Hsin, Jen and Mayans, Olga and Schulten, Klaus}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42015">
    <dc:contributor>Schulten, Klaus</dc:contributor>
    <dc:contributor>Hsin, Jen</dc:contributor>
    <dc:language>eng</dc:language>
    <dc:creator>Hsin, Jen</dc:creator>
    <dc:creator>Mayans, Olga</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>Mayans, Olga</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-04-11T10:14:43Z</dcterms:available>
    <dc:contributor>Lee, Eric H</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-04-11T10:14:43Z</dc:date>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/42015"/>
    <dcterms:title>Secondary and tertiary structure elasticity of titin Z1Z2 and a titin chain model</dcterms:title>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Schulten, Klaus</dc:creator>
    <dcterms:issued>2007</dcterms:issued>
    <dcterms:abstract xml:lang="eng">The giant protein titin, which is responsible for passive elasticity in muscle fibers, is built from approximately 300 regular immunoglobulin-like (Ig) domains and FN-III repeats. While the soft elasticity derived from its entropic regions, as well as the stiff mechanical resistance derived from the unfolding of the secondary structure elements of Ig- and FN-III domains have been studied extensively, less is known about the mechanical elasticity stemming from the orientation of neighboring domains relative to each other. Here we address the dynamics and energetics of interdomain arrangement of two adjacent Ig-domains of titin, Z1, and Z2, using molecular dynamics (MD) simulations. The simulations reveal conformational flexibility, due to the domain-domain geometry, that lends an intermediate force elasticity to titin. We employ adaptive biasing force MD simulations to calculate the energy required to bend the Z1Z2 tandem open to identify energetically feasible interdomain arrangements of the Z1 and Z2 domains. The finding is cast into a stochastic model for Z1Z2 interdomain elasticity that is generalized to a multiple domain chain replicating many Z1Z2-like units and representing a long titin segment. The elastic properties of this chain suggest that titin derives so-called tertiary structure elasticity from bending and twisting of its domains. Finally, we employ steered molecular dynamics simulations to stretch individual Z1 and Z2 domains and characterize the so-called secondary structure elasticity of the two domains. Our study suggests that titin's overall elastic response at weak force stems from a soft entropic spring behavior (not described here), from tertiary structure elasticity with an elastic spring constant of approximately 0.001-1 pN/A and, at strong forces, from secondary structure elasticity.</dcterms:abstract>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dc:creator>Lee, Eric H</dc:creator>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Diese Publikation teilen