Publikation:

Sparse Views, Near Light : A Practical Paradigm for Uncalibrated Point-light Photometric Stereo

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2024

Autor:innen

Brahimi, Mohammed
Haefner, Bjoern
Ye, Zhenzhang
Cremers, Daniel

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, NJ: IEEE, 2024, S. 11862-11872. Verfügbar unter: doi: 10.1109/CVPR52733.2024.01127

Zusammenfassung

Neural approaches have shown a significant progress on camera-based reconstruction. But they require either a fairly dense sampling of the viewing sphere, or pre-training on an existing dataset, thereby limiting their generalizability. In contrast, photometric stereo (PS) approaches have shown great potential for achieving high-quality reconstruction under sparse viewpoints. Yet, they are impractical because they typically require tedious laboratory conditions, are restricted to dark rooms, and often multi-staged, making them subject to accumulated errors. To address these shortcomings, we propose an end-to-end uncalibrated multi-view PS framework for reconstructing high-resolution shapes acquired from sparse viewpoints in a real-world environment. We relax the dark room assumption, and allow a combination of static ambient lighting and dynamic near LED lighting, thereby enabling easy data capture outside the lab. Experimental validation confirms that it outperforms existing baseline approaches in the regime of sparse viewpoints by a large margin. This allows to bring high-accuracy 3D reconstruction from the dark room to the real world, while maintaining a reasonable data capture complexity.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 2024, 17. Juni 2024 - 21. Juni 2024, Seattle, WA
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690BRAHIMI, Mohammed, Bjoern HAEFNER, Zhenzhang YE, Bastian GOLDLÜCKE, Daniel CREMERS, 2024. Sparse Views, Near Light : A Practical Paradigm for Uncalibrated Point-light Photometric Stereo. IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 2024. Seattle, WA, 17. Juni 2024 - 21. Juni 2024. In: 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, NJ: IEEE, 2024, S. 11862-11872. Verfügbar unter: doi: 10.1109/CVPR52733.2024.01127
BibTex
@inproceedings{Brahimi2024Spars-70085,
  year={2024},
  doi={10.1109/CVPR52733.2024.01127},
  title={Sparse Views, Near Light : A Practical Paradigm for Uncalibrated Point-light Photometric Stereo},
  publisher={IEEE},
  address={Piscataway, NJ},
  booktitle={ 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
  pages={11862--11872},
  author={Brahimi, Mohammed and Haefner, Bjoern and Ye, Zhenzhang and Goldlücke, Bastian and Cremers, Daniel}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/70085">
    <dc:creator>Cremers, Daniel</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:abstract>Neural approaches have shown a significant progress on camera-based reconstruction. But they require either a fairly dense sampling of the viewing sphere, or pre-training on an existing dataset, thereby limiting their generalizability. In contrast, photometric stereo (PS) approaches have shown great potential for achieving high-quality reconstruction under sparse viewpoints. Yet, they are impractical because they typically require tedious laboratory conditions, are restricted to dark rooms, and often multi-staged, making them subject to accumulated errors. To address these shortcomings, we propose an end-to-end uncalibrated multi-view PS framework for reconstructing high-resolution shapes acquired from sparse viewpoints in a real-world environment. We relax the dark room assumption, and allow a combination of static ambient lighting and dynamic near LED lighting, thereby enabling easy data capture outside the lab. Experimental validation confirms that it outperforms existing baseline approaches in the regime of sparse viewpoints by a large margin. This allows to bring high-accuracy 3D reconstruction from the dark room to the real world, while maintaining a reasonable data capture complexity.</dcterms:abstract>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Haefner, Bjoern</dc:creator>
    <dcterms:issued>2024</dcterms:issued>
    <dc:contributor>Goldlücke, Bastian</dc:contributor>
    <dc:contributor>Brahimi, Mohammed</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-06-07T11:07:05Z</dcterms:available>
    <dc:contributor>Haefner, Bjoern</dc:contributor>
    <dc:creator>Goldlücke, Bastian</dc:creator>
    <dcterms:title>Sparse Views, Near Light : A Practical Paradigm for Uncalibrated Point-light Photometric Stereo</dcterms:title>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-06-07T11:07:05Z</dc:date>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Ye, Zhenzhang</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:language>eng</dc:language>
    <dc:contributor>Ye, Zhenzhang</dc:contributor>
    <dc:contributor>Cremers, Daniel</dc:contributor>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/70085"/>
    <dc:creator>Brahimi, Mohammed</dc:creator>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen