Publikation:

A Comprehensive Evaluation of Arbitrary Image Style Transfer Methods

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2024

Autor:innen

Zhou, Zijun
Zhang, Yuxin
Cao, Juan
Dong, Weiming
Li, Xiangtao
Lee, Tong-Yee

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

IEEE Transactions on Visualization and Computer Graphics. Institute of Electrical and Electronics Engineers (IEEE). ISSN 1077-2626. eISSN 1941-0506. Verfügbar unter: doi: 10.1109/tvcg.2024.3466964

Zusammenfassung

Despite the remarkable process in the field of arbitrary image style transfer (AST), inconsistent evaluation continues to plague style transfer research. Existing methods often suffer from limited objective evaluation and inconsistent subjective feedback, hindering reliable comparisons among AST variants. In this study, we propose a multi-granularity assessment system that combines standardized objective and subjective evaluations. We collect a fine-grained dataset considering a range of image contexts such as different scenes, object complexities, and rich parsing information from multiple sources. Objective and subjective studies are conducted using the collected dataset. Specifically, we innovate on traditional subjective studies by developing an online evaluation system utilizing a combination of point-wise, pair-wise, and group-wise questionnaires. Finally, we bridge the gap between objective and subjective evaluations by examining the consistency between the results from the two studies. We experimentally evaluate CNN-based, flow-based, transformer-based, and diffusion-based AST methods by the proposed multi-granularity assessment system, which lays the foundation for a reliable and robust evaluation. Providing standardized measures, objective data, and detailed subjective feedback empowers researchers to make informed comparisons and drive innovation in this rapidly evolving field. Finally, for the collected dataset and our online evaluation system, please see http://ivc.ia.ac.cn .

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690ZHOU, Zijun, Fan TANG, Yuxin ZHANG, Oliver DEUSSEN, Juan CAO, Weiming DONG, Xiangtao LI, Tong-Yee LEE, 2024. A Comprehensive Evaluation of Arbitrary Image Style Transfer Methods. In: IEEE Transactions on Visualization and Computer Graphics. Institute of Electrical and Electronics Engineers (IEEE). ISSN 1077-2626. eISSN 1941-0506. Verfügbar unter: doi: 10.1109/tvcg.2024.3466964
BibTex
@article{Zhou2024Compr-70894,
  year={2024},
  doi={10.1109/tvcg.2024.3466964},
  title={A Comprehensive Evaluation of Arbitrary Image Style Transfer Methods},
  issn={1077-2626},
  journal={IEEE Transactions on Visualization and Computer Graphics},
  author={Zhou, Zijun and Tang, Fan and Zhang, Yuxin and Deussen, Oliver and Cao, Juan and Dong, Weiming and Li, Xiangtao and Lee, Tong-Yee}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/70894">
    <dc:creator>Tang, Fan</dc:creator>
    <dc:contributor>Lee, Tong-Yee</dc:contributor>
    <dcterms:issued>2024</dcterms:issued>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>Li, Xiangtao</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>Deussen, Oliver</dc:contributor>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/70894"/>
    <dc:contributor>Dong, Weiming</dc:contributor>
    <dc:contributor>Zhang, Yuxin</dc:contributor>
    <dc:contributor>Tang, Fan</dc:contributor>
    <dc:creator>Deussen, Oliver</dc:creator>
    <dcterms:abstract>Despite the remarkable process in the field of arbitrary image style transfer (AST), inconsistent evaluation continues to plague style transfer research. Existing methods often suffer from limited objective evaluation and inconsistent subjective feedback, hindering reliable comparisons among AST variants. In this study, we propose a multi-granularity assessment system that combines standardized objective and subjective evaluations. We collect a fine-grained dataset considering a range of image contexts such as different scenes, object complexities, and rich parsing information from multiple sources. Objective and subjective studies are conducted using the collected dataset. Specifically, we innovate on traditional subjective studies by developing an online evaluation system utilizing a combination of point-wise, pair-wise, and group-wise questionnaires. Finally, we bridge the gap between objective and subjective evaluations by examining the consistency between the results from the two studies. We experimentally evaluate CNN-based, flow-based, transformer-based, and diffusion-based AST methods by the proposed multi-granularity assessment system, which lays the foundation for a reliable and robust evaluation. Providing standardized measures, objective data, and detailed subjective feedback empowers researchers to make informed comparisons and drive innovation in this rapidly evolving field. Finally, for the collected dataset and our online evaluation system, please see http://ivc.ia.ac.cn .</dcterms:abstract>
    <dc:creator>Dong, Weiming</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Li, Xiangtao</dc:creator>
    <dc:creator>Cao, Juan</dc:creator>
    <dc:creator>Zhou, Zijun</dc:creator>
    <dc:creator>Lee, Tong-Yee</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-10-04T07:09:27Z</dcterms:available>
    <dc:contributor>Cao, Juan</dc:contributor>
    <dc:contributor>Zhou, Zijun</dc:contributor>
    <dc:language>eng</dc:language>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Zhang, Yuxin</dc:creator>
    <dcterms:title>A Comprehensive Evaluation of Arbitrary Image Style Transfer Methods</dcterms:title>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-10-04T07:09:27Z</dc:date>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Online First: Zeitschriftenartikel, die schon vor ihrer Zuordnung zu einem bestimmten Zeitschriftenheft (= Issue) online gestellt werden. Online First-Artikel werden auf der Homepage des Journals in der Verlagsfassung veröffentlicht.
Diese Publikation teilen