Publikation:

A multi modal approach to gesture recognition from audio and video data

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2013

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

Proceedings of the 15th ACM on International conference on multimodal interaction - ICMI '13. New York, New York, USA: ACM Press, 2013, pp. 461-466. ISBN 978-1-4503-2129-7. Available under: doi: 10.1145/2522848.2532592

Zusammenfassung

We describe in this paper our approach for the Multi-modal gesture recognition challenge organized by ChaLearn in conjunction with the ICMI 2013 conference. The competition's task was to learn a vocabulary of 20 types of Italian gestures performed from different persons and to detect them in sequences. We develop an algorithm to find the gesture intervals in the audio data, extract audio features from those intervals and train two different models. We engineer features from the skeleton data and use the gesture intervals in the training data to train a model that we afterwards apply to the test sequences using a sliding window. We combine the models through weighted averaging. We find that this way to combine information from two different sources boosts the models performance significantly.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

the 15th ACM, 9. Dez. 2013 - 13. Dez. 2013, Sydney, Australia
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690BAYER, Immanuel, Thierry SILBERMANN, 2013. A multi modal approach to gesture recognition from audio and video data. the 15th ACM. Sydney, Australia, 9. Dez. 2013 - 13. Dez. 2013. In: Proceedings of the 15th ACM on International conference on multimodal interaction - ICMI '13. New York, New York, USA: ACM Press, 2013, pp. 461-466. ISBN 978-1-4503-2129-7. Available under: doi: 10.1145/2522848.2532592
BibTex
@inproceedings{Bayer2013multi-26475,
  year={2013},
  doi={10.1145/2522848.2532592},
  title={A multi modal approach to gesture recognition from audio and video data},
  isbn={978-1-4503-2129-7},
  publisher={ACM Press},
  address={New York, New York, USA},
  booktitle={Proceedings of the 15th ACM on International conference on multimodal interaction - ICMI '13},
  pages={461--466},
  author={Bayer, Immanuel and Silbermann, Thierry}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/26475">
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/26475"/>
    <dc:language>eng</dc:language>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:rights>terms-of-use</dc:rights>
    <dc:creator>Silbermann, Thierry</dc:creator>
    <dcterms:title>A multi modal approach to gesture recognition from audio and video data</dcterms:title>
    <dcterms:issued>2013</dcterms:issued>
    <dcterms:bibliographicCitation>Proceedings of the 15th ACM International conference on multimodal interaction : Sydney, NSW, Australia ; December 09 - 13, 2013 / Julien Epps ... (eds.). - New York : ACM, 2013. - S. 461-466. - ISBN 978-1-4503-2129-7</dcterms:bibliographicCitation>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-02-25T09:52:37Z</dcterms:available>
    <dc:contributor>Silbermann, Thierry</dc:contributor>
    <dc:contributor>Bayer, Immanuel</dc:contributor>
    <dc:creator>Bayer, Immanuel</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-02-25T09:52:37Z</dc:date>
    <dcterms:abstract xml:lang="eng">We describe in this paper our approach for the Multi-modal gesture recognition challenge organized by ChaLearn in conjunction with the ICMI 2013 conference. The competition's task was to learn a vocabulary of 20 types of Italian gestures performed from different persons and to detect them in sequences. We develop an algorithm to find the gesture intervals in the audio data, extract audio features from those intervals and train two different models. We engineer features from the skeleton data and use the gesture intervals in the training data to train a model that we afterwards apply to the test sequences using a sliding window. We combine the models through weighted averaging. We find that this way to combine information from two different sources boosts the models performance significantly.</dcterms:abstract>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen