Publikation: Alkyl Chain Barriers for Kinetic Optimization in Dye-Sensitized Solar Cells
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
The optimization of interfacial charge transfer is crucial to the design of dye-sensitized solar cells. In this paper we address the dynamics of the charge separation and recombination in liquid-electrolyte and solid-state cells employing a series of amphiphilic ruthenium dyes with varying hydrocarbon chain lengths, acting as an insulating barrier for electron−hole recombination. Dynamics of electron injection, monitored by time-resolved emission spectroscopy, and of charge recombination and regeneration, monitored by transient optical absorption spectroscopy, are correlated with device performance. We find that increasing dye alkyl chain length results in slower charge recombination dynamics to both the dye cation and the redox electrolyte or solid-state hole conductor (spiro-OMeTAD). These slower recombination dynamics are however paralleled by reduced rates for both electron injection into the TiO2 electrode and dye regeneration by the I-/I3- redox couple or spiro-OMeTAD. Kinetic competition between electron recombination with dye cations and dye ground state regeneration by the iodide electrolyte is found to be a key factor for liquid electrolyte cells, with optimum device performance being obtained when the dye regeneration is just fast enough to compete with electron−hole recombination. These results are discussed in terms of the minimization of kinetic redundancy in solid-state and liquid-electrolyte dye-sensitized photovoltaic devices.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
KROEZE, Jessica E., Narukuni HIRATA, Sara KOOPS, Mohammad Khaja NAZEERUDDIN, Lukas SCHMIDT-MENDE, Michael GRÄTZEL, James R. DURRANT, 2006. Alkyl Chain Barriers for Kinetic Optimization in Dye-Sensitized Solar Cells. In: Journal of the American Chemical Society. 2006, 128(50), pp. 16376-16383. ISSN 0002-7863. eISSN 1520-5126. Available under: doi: 10.1021/ja065653fBibTex
@article{Kroeze2006-12-20Alkyl-25205, year={2006}, doi={10.1021/ja065653f}, title={Alkyl Chain Barriers for Kinetic Optimization in Dye-Sensitized Solar Cells}, number={50}, volume={128}, issn={0002-7863}, journal={Journal of the American Chemical Society}, pages={16376--16383}, author={Kroeze, Jessica E. and Hirata, Narukuni and Koops, Sara and Nazeeruddin, Mohammad Khaja and Schmidt-Mende, Lukas and Grätzel, Michael and Durrant, James R.} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/25205"> <dc:creator>Kroeze, Jessica E.</dc:creator> <dc:language>eng</dc:language> <dc:contributor>Grätzel, Michael</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/29"/> <dc:rights>terms-of-use</dc:rights> <dcterms:title>Alkyl Chain Barriers for Kinetic Optimization in Dye-Sensitized Solar Cells</dcterms:title> <dc:contributor>Hirata, Narukuni</dc:contributor> <dc:creator>Nazeeruddin, Mohammad Khaja</dc:creator> <dcterms:issued>2006-12-20</dcterms:issued> <dc:creator>Schmidt-Mende, Lukas</dc:creator> <dc:creator>Koops, Sara</dc:creator> <dc:creator>Grätzel, Michael</dc:creator> <dc:creator>Durrant, James R.</dc:creator> <dcterms:bibliographicCitation>Journal of the American Chemical Society ; 128 (2006), 50. - S. 16376-16383</dcterms:bibliographicCitation> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-11-19T14:22:25Z</dcterms:available> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/> <dc:contributor>Koops, Sara</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:contributor>Durrant, James R.</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/29"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/> <dc:contributor>Schmidt-Mende, Lukas</dc:contributor> <dc:contributor>Nazeeruddin, Mohammad Khaja</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-11-19T14:22:25Z</dc:date> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Hirata, Narukuni</dc:creator> <dcterms:abstract xml:lang="eng">The optimization of interfacial charge transfer is crucial to the design of dye-sensitized solar cells. In this paper we address the dynamics of the charge separation and recombination in liquid-electrolyte and solid-state cells employing a series of amphiphilic ruthenium dyes with varying hydrocarbon chain lengths, acting as an insulating barrier for electron−hole recombination. Dynamics of electron injection, monitored by time-resolved emission spectroscopy, and of charge recombination and regeneration, monitored by transient optical absorption spectroscopy, are correlated with device performance. We find that increasing dye alkyl chain length results in slower charge recombination dynamics to both the dye cation and the redox electrolyte or solid-state hole conductor (spiro-OMeTAD). These slower recombination dynamics are however paralleled by reduced rates for both electron injection into the TiO<sub>2</sub> electrode and dye regeneration by the I-/I<sub>3</sub>- redox couple or spiro-OMeTAD. Kinetic competition between electron recombination with dye cations and dye ground state regeneration by the iodide electrolyte is found to be a key factor for liquid electrolyte cells, with optimum device performance being obtained when the dye regeneration is just fast enough to compete with electron−hole recombination. These results are discussed in terms of the minimization of kinetic redundancy in solid-state and liquid-electrolyte dye-sensitized photovoltaic devices.</dcterms:abstract> <dc:contributor>Kroeze, Jessica E.</dc:contributor> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/25205"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/25205/1/Kroeze_252054.pdf"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/25205/1/Kroeze_252054.pdf"/> </rdf:Description> </rdf:RDF>