Visualizing the Residue Interaction Landscape of Proteins by Temporal Network Embedding

Lade...
Vorschaubild
Dateien
Franke_2-aa52desfmso86.PDF
Franke_2-aa52desfmso86.PDFGröße: 6.97 MBDownloads: 14
Datum
2023
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
ArXiv-ID
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Hybrid
Sammlungen
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Journal of Chemical Theory and Computation. American Chemical Society (ACS). 2023, 19(10), pp. 2985-2995. ISSN 1549-9618. eISSN 1549-9626. Available under: doi: 10.1021/acs.jctc.2c01228
Zusammenfassung

Characterizing the structural dynamics of proteins with heterogeneous conformational landscapes is crucial to understanding complex biomolecular processes. To this end, dimensionality reduction algorithms are used to produce low-dimensional embeddings of the high-dimensional conformational phase space. However, identifying a compact and informative set of input features for the embedding remains an ongoing challenge. Here, we propose to harness the power of Residue Interaction Networks (RINs) and their centrality measures, established tools to provide a graph theoretical view on molecular structure. Specifically, we combine the closeness centrality, which captures global features of the protein conformation at residue-wise resolution, with EncoderMap, a hybrid neural-network autoencoder/multidimensional-scaling like dimensionality reduction algorithm. We find that the resulting low-dimensional embedding is a meaningful visualization of the residue interaction landscape that resolves structural details of the protein behavior while retaining global interpretability. This feature-based graph embedding of temporal protein graphs makes it possible to apply the general descriptive power of RIN formalisms to the analysis of protein simulations of complex processes such as protein folding and multidomain interactions requiring no protein-specific input. We demonstrate this on simulations of the fast folding protein Trp-Cage and the multidomain signaling protein FAT10. Due to its generality and modularity, the presented approach can easily be transferred to other protein systems.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
540 Chemie
Schlagwörter
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690FRANKE, Leon, Christine PETER, 2023. Visualizing the Residue Interaction Landscape of Proteins by Temporal Network Embedding. In: Journal of Chemical Theory and Computation. American Chemical Society (ACS). 2023, 19(10), pp. 2985-2995. ISSN 1549-9618. eISSN 1549-9626. Available under: doi: 10.1021/acs.jctc.2c01228
BibTex
@article{Franke2023-04-25Visua-67046,
  year={2023},
  doi={10.1021/acs.jctc.2c01228},
  title={Visualizing the Residue Interaction Landscape of Proteins by Temporal Network Embedding},
  number={10},
  volume={19},
  issn={1549-9618},
  journal={Journal of Chemical Theory and Computation},
  pages={2985--2995},
  author={Franke, Leon and Peter, Christine}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/67046">
    <dc:creator>Peter, Christine</dc:creator>
    <dc:contributor>Franke, Leon</dc:contributor>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/67046/1/Franke_2-aa52desfmso86.PDF"/>
    <dcterms:issued>2023-04-25</dcterms:issued>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/29"/>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/>
    <dc:language>eng</dc:language>
    <dcterms:abstract>Characterizing the structural dynamics of proteins with heterogeneous conformational landscapes is crucial to understanding complex biomolecular processes. To this end, dimensionality reduction algorithms are used to produce low-dimensional embeddings of the high-dimensional conformational phase space. However, identifying a compact and informative set of input features for the embedding remains an ongoing challenge. Here, we propose to harness the power of Residue Interaction Networks (RINs) and their centrality measures, established tools to provide a graph theoretical view on molecular structure. Specifically, we combine the closeness centrality, which captures global features of the protein conformation at residue-wise resolution, with EncoderMap, a hybrid neural-network autoencoder/multidimensional-scaling like dimensionality reduction algorithm. We find that the resulting low-dimensional embedding is a meaningful visualization of the residue interaction landscape that resolves structural details of the protein behavior while retaining global interpretability. This feature-based graph embedding of temporal protein graphs makes it possible to apply the general descriptive power of RIN formalisms to the analysis of protein simulations of complex processes such as protein folding and multidomain interactions requiring no protein-specific input. We demonstrate this on simulations of the fast folding protein Trp-Cage and the multidomain signaling protein FAT10. Due to its generality and modularity, the presented approach can easily be transferred to other protein systems.</dcterms:abstract>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/67046/1/Franke_2-aa52desfmso86.PDF"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/67046"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-06-02T10:56:00Z</dcterms:available>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/29"/>
    <dc:rights>Attribution 4.0 International</dc:rights>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-06-02T10:56:00Z</dc:date>
    <dc:contributor>Peter, Christine</dc:contributor>
    <dcterms:title>Visualizing the Residue Interaction Landscape of Proteins by Temporal Network Embedding</dcterms:title>
    <dc:creator>Franke, Leon</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen