Influencing Light and Elevated Temperature Induced Degradation and Surface-Related Degradation Kinetics in Float-Zone Silicon by Varying the Initial Sample State

Loading...
Thumbnail Image
Date
2020
Editors
Contact
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
ArXiv-ID
International patent number
Link to the license
EU project number
Project
Open Access publication
Collections
Restricted until
Title in another language
Research Projects
Organizational Units
Journal Issue
Publication type
Journal article
Publication status
Published
Published in
IEEE Journal of Photovoltaics ; 10 (2020), 1. - pp. 85-93. - Institute of Electrical and Electronics Engineers (IEEE). - ISSN 2156-3381. - eISSN 2156-3403
Abstract
Light and elevated temperature induced degradation (LeTID) kinetics in float-zone silicon are investigated by varying the initial sample state, composed of different base material, base doping, SiN x :H films, and subsequent firing, and/or annealing steps. The approach of deliberately changing the initial sample state is shown to allow for specific studies of influences of LeTID kinetics. Bulk- and surface-related degradations are examined separately and the influence on the kinetics of bulk- and surface-related degradation is illustrated by a four-state and three-state model, respectively. In case of bulk-related degradation, an increase in defect density because of the firing step is shown, whereas the annealing step has an inverse effect. Both temperature steps—individually and combined—influence the transition rates of bulk-related degradation and regeneration by presumably changing the distribution of a defect precursor. For surface-related degradation, the firing step reduces the transition rate from the initial to the degraded state. In addition, the influence of a comparably humid atmosphere and the absence of UV light are found to be negligible.
Summary in another language
Subject (DDC)
530 Physics
Keywords
Conference
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690HAMMANN, Benjamin, Josh ENGELHARDT, David SPERBER, Axel HERGUTH, Giso HAHN, 2020. Influencing Light and Elevated Temperature Induced Degradation and Surface-Related Degradation Kinetics in Float-Zone Silicon by Varying the Initial Sample State. In: IEEE Journal of Photovoltaics. Institute of Electrical and Electronics Engineers (IEEE). 10(1), pp. 85-93. ISSN 2156-3381. eISSN 2156-3403. Available under: doi: 10.1109/JPHOTOV.2019.2954768
BibTex
@article{Hammann2020-01Influ-48137,
  year={2020},
  doi={10.1109/JPHOTOV.2019.2954768},
  title={Influencing Light and Elevated Temperature Induced Degradation and Surface-Related Degradation Kinetics in Float-Zone Silicon by Varying the Initial Sample State},
  number={1},
  volume={10},
  issn={2156-3381},
  journal={IEEE Journal of Photovoltaics},
  pages={85--93},
  author={Hammann, Benjamin and Engelhardt, Josh and Sperber, David and Herguth, Axel and Hahn, Giso}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/48137">
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-01-03T08:44:14Z</dcterms:available>
    <dc:creator>Engelhardt, Josh</dc:creator>
    <dcterms:title>Influencing Light and Elevated Temperature Induced Degradation and Surface-Related Degradation Kinetics in Float-Zone Silicon by Varying the Initial Sample State</dcterms:title>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/48137/1/Hammann_2-aas0xbv6bh1q8.pdf"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:contributor>Sperber, David</dc:contributor>
    <dc:contributor>Engelhardt, Josh</dc:contributor>
    <dc:creator>Hammann, Benjamin</dc:creator>
    <dcterms:abstract xml:lang="eng">Light and elevated temperature induced degradation (LeTID) kinetics in float-zone silicon are investigated by varying the initial sample state, composed of different base material, base doping, SiN &lt;sub&gt;x&lt;/sub&gt; :H films, and subsequent firing, and/or annealing steps. The approach of deliberately changing the initial sample state is shown to allow for specific studies of influences of LeTID kinetics. Bulk- and surface-related degradations are examined separately and the influence on the kinetics of bulk- and surface-related degradation is illustrated by a four-state and three-state model, respectively. In case of bulk-related degradation, an increase in defect density because of the firing step is shown, whereas the annealing step has an inverse effect. Both temperature steps—individually and combined—influence the transition rates of bulk-related degradation and regeneration by presumably changing the distribution of a defect precursor. For surface-related degradation, the firing step reduces the transition rate from the initial to the degraded state. In addition, the influence of a comparably humid atmosphere and the absence of UV light are found to be negligible.</dcterms:abstract>
    <dc:contributor>Hahn, Giso</dc:contributor>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/48137"/>
    <dc:creator>Sperber, David</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/48137/1/Hammann_2-aas0xbv6bh1q8.pdf"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-01-03T08:44:14Z</dc:date>
    <dc:contributor>Hammann, Benjamin</dc:contributor>
    <dcterms:issued>2020-01</dcterms:issued>
    <dc:language>eng</dc:language>
    <dc:creator>Herguth, Axel</dc:creator>
    <dc:contributor>Herguth, Axel</dc:contributor>
    <dc:creator>Hahn, Giso</dc:creator>
    <dc:rights>terms-of-use</dc:rights>
  </rdf:Description>
</rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Contact
URL of original publication
Test date of URL
Examination date of dissertation
Method of financing
Comment on publication
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
Yes
Refereed
No