Swarm robotics : Robustness, scalability, and self-X features in industrial applications

Lade...
Vorschaubild
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2019
Autor:innen
Heinrich, Mary Katherine
Soorati, Mohammad Divband
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
EU-Projektnummer
DFG-Projektnummer
Projekt
Open Access-Veröffentlichung
Gesperrt bis
Titel in einer weiteren Sprache
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Information Technology : it. De Gruyter. 2019, 61(4), pp. 159-167. ISSN 1611-2776. eISSN 2196-7032. Available under: doi: 10.1515/itit-2019-0003
Zusammenfassung

Applying principles of swarm intelligence to the control of autonomous systems in industry can advance our ability to manage complexity in prominent and high-cost sectors—such as transportation, logistics, and construction. In swarm robotics, the exclusive use of decentralized control relying on local communication and information provides the key advantage first of scalability, and second of robustness against failure points. These are directly useful in certain applied tasks that can be studied in laboratory environments, such as self-assembly and self-organized construction. In this article, we give a brief introduction to swarm robotics for a broad audience, with the intention of targeting future industrial applications. We then present a summary of four examples of our recently published research results with simple models. First, we present our approach to self-reconfiguration, which uses collective adjustment of swarm density in a dynamic setting. Second, we describe our robot experiments for self-organized material deployment in structured and semi-structured environments, applicable to braided composites. Third, we present our machine learning approach for self-assembly, motivated as a simple model developing foundational methods, which generates self-organizing robot behaviors to form emergent patterns. Fourth, we describe our experiments implementing a bioinspired model in a robot swarm, where we show self-healing of damage as the robots collectively locate a resource. Overall, the four examples we present concern robustness, scalability, and self-X features, which we propose as potentially relevant to future research in swarm robotics applied to industry sectors. We summarize these approaches as an introduction to our recent research, targeting the broad audience of this journal.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
004 Informatik
Schlagwörter
swarm robotics; swarm intelligence; robustness; scalability; adaptivity; self-X
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690HEINRICH, Mary Katherine, Mohammad Divband SOORATI, Tanja Katharina KAISER, Mostafa WAHBY, Heiko HAMANN, 2019. Swarm robotics : Robustness, scalability, and self-X features in industrial applications. In: Information Technology : it. De Gruyter. 2019, 61(4), pp. 159-167. ISSN 1611-2776. eISSN 2196-7032. Available under: doi: 10.1515/itit-2019-0003
BibTex
@article{Heinrich2019Swarm-58554,
  year={2019},
  doi={10.1515/itit-2019-0003},
  title={Swarm robotics : Robustness, scalability, and self-X features in industrial applications},
  number={4},
  volume={61},
  issn={1611-2776},
  journal={Information Technology : it},
  pages={159--167},
  author={Heinrich, Mary Katherine and Soorati, Mohammad Divband and Kaiser, Tanja Katharina and Wahby, Mostafa and Hamann, Heiko}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/58554">
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/58554"/>
    <dc:creator>Hamann, Heiko</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-09-08T10:11:21Z</dcterms:available>
    <dc:creator>Kaiser, Tanja Katharina</dc:creator>
    <dcterms:issued>2019</dcterms:issued>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:rights>terms-of-use</dc:rights>
    <dc:language>eng</dc:language>
    <dc:creator>Soorati, Mohammad Divband</dc:creator>
    <dcterms:abstract xml:lang="eng">Applying principles of swarm intelligence to the control of autonomous systems in industry can advance our ability to manage complexity in prominent and high-cost sectors—such as transportation, logistics, and construction. In swarm robotics, the exclusive use of decentralized control relying on local communication and information provides the key advantage first of scalability, and second of robustness against failure points. These are directly useful in certain applied tasks that can be studied in laboratory environments, such as self-assembly and self-organized construction. In this article, we give a brief introduction to swarm robotics for a broad audience, with the intention of targeting future industrial applications. We then present a summary of four examples of our recently published research results with simple models. First, we present our approach to self-reconfiguration, which uses collective adjustment of swarm density in a dynamic setting. Second, we describe our robot experiments for self-organized material deployment in structured and semi-structured environments, applicable to braided composites. Third, we present our machine learning approach for self-assembly, motivated as a simple model developing foundational methods, which generates self-organizing robot behaviors to form emergent patterns. Fourth, we describe our experiments implementing a bioinspired model in a robot swarm, where we show self-healing of damage as the robots collectively locate a resource. Overall, the four examples we present concern robustness, scalability, and self-X features, which we propose as potentially relevant to future research in swarm robotics applied to industry sectors. We summarize these approaches as an introduction to our recent research, targeting the broad audience of this journal.</dcterms:abstract>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:contributor>Soorati, Mohammad Divband</dc:contributor>
    <dc:contributor>Wahby, Mostafa</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-09-08T10:11:21Z</dc:date>
    <dc:contributor>Kaiser, Tanja Katharina</dc:contributor>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Wahby, Mostafa</dc:creator>
    <dc:contributor>Hamann, Heiko</dc:contributor>
    <dc:contributor>Heinrich, Mary Katherine</dc:contributor>
    <dcterms:title>Swarm robotics : Robustness, scalability, and self-X features in industrial applications</dcterms:title>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Heinrich, Mary Katherine</dc:creator>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Ja