Publikation:

Swarm robotics : Robustness, scalability, and self-X features in industrial applications

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2019

Autor:innen

Heinrich, Mary Katherine
Soorati, Mohammad Divband
Kaiser, Tanja Katharina
Wahby, Mostafa
Hamann, Heiko

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Information Technology : it. De Gruyter. 2019, 61(4), pp. 159-167. ISSN 1611-2776. eISSN 2196-7032. Available under: doi: 10.1515/itit-2019-0003

Zusammenfassung

Applying principles of swarm intelligence to the control of autonomous systems in industry can advance our ability to manage complexity in prominent and high-cost sectors—such as transportation, logistics, and construction. In swarm robotics, the exclusive use of decentralized control relying on local communication and information provides the key advantage first of scalability, and second of robustness against failure points. These are directly useful in certain applied tasks that can be studied in laboratory environments, such as self-assembly and self-organized construction. In this article, we give a brief introduction to swarm robotics for a broad audience, with the intention of targeting future industrial applications. We then present a summary of four examples of our recently published research results with simple models. First, we present our approach to self-reconfiguration, which uses collective adjustment of swarm density in a dynamic setting. Second, we describe our robot experiments for self-organized material deployment in structured and semi-structured environments, applicable to braided composites. Third, we present our machine learning approach for self-assembly, motivated as a simple model developing foundational methods, which generates self-organizing robot behaviors to form emergent patterns. Fourth, we describe our experiments implementing a bioinspired model in a robot swarm, where we show self-healing of damage as the robots collectively locate a resource. Overall, the four examples we present concern robustness, scalability, and self-X features, which we propose as potentially relevant to future research in swarm robotics applied to industry sectors. We summarize these approaches as an introduction to our recent research, targeting the broad audience of this journal.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

swarm robotics; swarm intelligence; robustness; scalability; adaptivity; self-X

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690HEINRICH, Mary Katherine, Mohammad Divband SOORATI, Tanja Katharina KAISER, Mostafa WAHBY, Heiko HAMANN, 2019. Swarm robotics : Robustness, scalability, and self-X features in industrial applications. In: Information Technology : it. De Gruyter. 2019, 61(4), pp. 159-167. ISSN 1611-2776. eISSN 2196-7032. Available under: doi: 10.1515/itit-2019-0003
BibTex
@article{Heinrich2019Swarm-58554,
  year={2019},
  doi={10.1515/itit-2019-0003},
  title={Swarm robotics : Robustness, scalability, and self-X features in industrial applications},
  number={4},
  volume={61},
  issn={1611-2776},
  journal={Information Technology : it},
  pages={159--167},
  author={Heinrich, Mary Katherine and Soorati, Mohammad Divband and Kaiser, Tanja Katharina and Wahby, Mostafa and Hamann, Heiko}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/58554">
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/58554"/>
    <dc:creator>Hamann, Heiko</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-09-08T10:11:21Z</dcterms:available>
    <dc:creator>Kaiser, Tanja Katharina</dc:creator>
    <dcterms:issued>2019</dcterms:issued>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:rights>terms-of-use</dc:rights>
    <dc:language>eng</dc:language>
    <dc:creator>Soorati, Mohammad Divband</dc:creator>
    <dcterms:abstract xml:lang="eng">Applying principles of swarm intelligence to the control of autonomous systems in industry can advance our ability to manage complexity in prominent and high-cost sectors—such as transportation, logistics, and construction. In swarm robotics, the exclusive use of decentralized control relying on local communication and information provides the key advantage first of scalability, and second of robustness against failure points. These are directly useful in certain applied tasks that can be studied in laboratory environments, such as self-assembly and self-organized construction. In this article, we give a brief introduction to swarm robotics for a broad audience, with the intention of targeting future industrial applications. We then present a summary of four examples of our recently published research results with simple models. First, we present our approach to self-reconfiguration, which uses collective adjustment of swarm density in a dynamic setting. Second, we describe our robot experiments for self-organized material deployment in structured and semi-structured environments, applicable to braided composites. Third, we present our machine learning approach for self-assembly, motivated as a simple model developing foundational methods, which generates self-organizing robot behaviors to form emergent patterns. Fourth, we describe our experiments implementing a bioinspired model in a robot swarm, where we show self-healing of damage as the robots collectively locate a resource. Overall, the four examples we present concern robustness, scalability, and self-X features, which we propose as potentially relevant to future research in swarm robotics applied to industry sectors. We summarize these approaches as an introduction to our recent research, targeting the broad audience of this journal.</dcterms:abstract>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:contributor>Soorati, Mohammad Divband</dc:contributor>
    <dc:contributor>Wahby, Mostafa</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-09-08T10:11:21Z</dc:date>
    <dc:contributor>Kaiser, Tanja Katharina</dc:contributor>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Wahby, Mostafa</dc:creator>
    <dc:contributor>Hamann, Heiko</dc:contributor>
    <dc:contributor>Heinrich, Mary Katherine</dc:contributor>
    <dcterms:title>Swarm robotics : Robustness, scalability, and self-X features in industrial applications</dcterms:title>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Heinrich, Mary Katherine</dc:creator>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Ja
Diese Publikation teilen