Publikation: An improved constraint filtering technique for inferring hidden states and parameters of a biological model
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
In systems biology, kinetic models represent the biological system using a set of ordinary differential equations (ODEs). The correct values of the parameters within these ODEs are critical for a reliable study of the dynamic behaviour of such systems. Typically, it is only possible to experimentally measure a fraction of these parameter values. The rest must be indirectly determined from measurements of other quantities. In this article, we propose a novel statistical inference technique to computationally estimate these unknown parameter values. By characterizing the ODEs with non-linear state-space equations, this inference technique models the unknown parameters as hidden states, which can then be estimated from noisy measurement data.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
MURTUZA BAKER, Syed, C. Hart POSKAR, Falk SCHREIBER, Björn H. JUNKER, 2013. An improved constraint filtering technique for inferring hidden states and parameters of a biological model. In: Bioinformatics. 2013, 29(8), pp. 1052-1059. ISSN 1367-4803. eISSN 1460-2059. Available under: doi: 10.1093/bioinformatics/btt097BibTex
@article{MurtuzaBaker2013-04-15impro-38241, year={2013}, doi={10.1093/bioinformatics/btt097}, title={An improved constraint filtering technique for inferring hidden states and parameters of a biological model}, number={8}, volume={29}, issn={1367-4803}, journal={Bioinformatics}, pages={1052--1059}, author={Murtuza Baker, Syed and Poskar, C. Hart and Schreiber, Falk and Junker, Björn H.} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/38241"> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-03-31T09:22:07Z</dcterms:available> <dc:language>eng</dc:language> <dcterms:abstract xml:lang="eng">In systems biology, kinetic models represent the biological system using a set of ordinary differential equations (ODEs). The correct values of the parameters within these ODEs are critical for a reliable study of the dynamic behaviour of such systems. Typically, it is only possible to experimentally measure a fraction of these parameter values. The rest must be indirectly determined from measurements of other quantities. In this article, we propose a novel statistical inference technique to computationally estimate these unknown parameter values. By characterizing the ODEs with non-linear state-space equations, this inference technique models the unknown parameters as hidden states, which can then be estimated from noisy measurement data.</dcterms:abstract> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-03-31T09:22:07Z</dc:date> <dc:contributor>Poskar, C. Hart</dc:contributor> <dc:creator>Schreiber, Falk</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:contributor>Murtuza Baker, Syed</dc:contributor> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/38241"/> <dc:creator>Murtuza Baker, Syed</dc:creator> <dc:creator>Poskar, C. Hart</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:contributor>Schreiber, Falk</dc:contributor> <dcterms:title>An improved constraint filtering technique for inferring hidden states and parameters of a biological model</dcterms:title> <dc:creator>Junker, Björn H.</dc:creator> <dcterms:issued>2013-04-15</dcterms:issued> <dc:contributor>Junker, Björn H.</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> </rdf:Description> </rdf:RDF>