An improved constraint filtering technique for inferring hidden states and parameters of a biological model

Vorschaubild nicht verfügbar
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2013
Autor:innen
Murtuza Baker, Syed
Poskar, C. Hart
Junker, Björn H.
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
eISSN
item.preview.dc.identifier.isbn
Bibliografische Daten
Verlag
Schriftenreihe
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Link zur Lizenz
oops
EU-Projektnummer
Projekt
Open Access-Veröffentlichung
Gesperrt bis
Titel in einer weiteren Sprache
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Bioinformatics ; 29 (2013), 8. - S. 1052-1059. - ISSN 1367-4803. - eISSN 1460-2059
Zusammenfassung
In systems biology, kinetic models represent the biological system using a set of ordinary differential equations (ODEs). The correct values of the parameters within these ODEs are critical for a reliable study of the dynamic behaviour of such systems. Typically, it is only possible to experimentally measure a fraction of these parameter values. The rest must be indirectly determined from measurements of other quantities. In this article, we propose a novel statistical inference technique to computationally estimate these unknown parameter values. By characterizing the ODEs with non-linear state-space equations, this inference technique models the unknown parameters as hidden states, which can then be estimated from noisy measurement data.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
004 Informatik
Schlagwörter
Konferenz
Rezension
undefined / . - undefined, undefined. - (undefined; undefined)
Zitieren
ISO 690MURTUZA BAKER, Syed, C. Hart POSKAR, Falk SCHREIBER, Björn H. JUNKER, 2013. An improved constraint filtering technique for inferring hidden states and parameters of a biological model. In: Bioinformatics. 29(8), pp. 1052-1059. ISSN 1367-4803. eISSN 1460-2059. Available under: doi: 10.1093/bioinformatics/btt097
BibTex
@article{MurtuzaBaker2013-04-15impro-38241,
  year={2013},
  doi={10.1093/bioinformatics/btt097},
  title={An improved constraint filtering technique for inferring hidden states and parameters of a biological model},
  number={8},
  volume={29},
  issn={1367-4803},
  journal={Bioinformatics},
  pages={1052--1059},
  author={Murtuza Baker, Syed and Poskar, C. Hart and Schreiber, Falk and Junker, Björn H.}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/38241">
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-03-31T09:22:07Z</dcterms:available>
    <dc:language>eng</dc:language>
    <dcterms:abstract xml:lang="eng">In systems biology, kinetic models represent the biological system using a set of ordinary differential equations (ODEs). The correct values of the parameters within these ODEs are critical for a reliable study of the dynamic behaviour of such systems. Typically, it is only possible to experimentally measure a fraction of these parameter values. The rest must be indirectly determined from measurements of other quantities. In this article, we propose a novel statistical inference technique to computationally estimate these unknown parameter values. By characterizing the ODEs with non-linear state-space equations, this inference technique models the unknown parameters as hidden states, which can then be estimated from noisy measurement data.</dcterms:abstract>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-03-31T09:22:07Z</dc:date>
    <dc:contributor>Poskar, C. Hart</dc:contributor>
    <dc:creator>Schreiber, Falk</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>Murtuza Baker, Syed</dc:contributor>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/38241"/>
    <dc:creator>Murtuza Baker, Syed</dc:creator>
    <dc:creator>Poskar, C. Hart</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:contributor>Schreiber, Falk</dc:contributor>
    <dcterms:title>An improved constraint filtering technique for inferring hidden states and parameters of a biological model</dcterms:title>
    <dc:creator>Junker, Björn H.</dc:creator>
    <dcterms:issued>2013-04-15</dcterms:issued>
    <dc:contributor>Junker, Björn H.</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet