Publikation:

Story Tracker : incremental visual text analytics of news story development

Lade...
Vorschaubild

Dateien

Krstajic_262244.pdf
Krstajic_262244.pdfGröße: 1.96 MBDownloads: 1511

Datum

2013

Autor:innen

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Information Visualization. 2013, 12(3-4), pp. 308-323. ISSN 1473-8716. eISSN 1473-8724. Available under: doi: 10.1177/1473871613493996

Zusammenfassung

Online news sources produce thousands of news articles every day, reporting on local and global real-world events. New information quickly replaces the old, making it difficult for readers to put current events in the context of the past. The stories about these events have complex relationships and characteristics that are difficult to model: they can be weakly or strongly related or they can merge or split over time. In this article, we present a visual analytics system for temporal analysis of news stories in dynamic information streams, which combines interactive visualization and text mining techniques to facilitate the analysis of similar topics that split and merge over time. Text clustering algorithms extract stories from online news streams in consecutive time windows and identify similar stories from the past. The stories are displayed in a visualization, which (1) sorts the stories by minimizing clutter and overlap from edge crossings, (2) shows their temporal characteristics in different time frames with different levels of detail, and (3) allows incremental updates of the display without recalculating the past data. Stories can be interactively filtered by their duration and connectivity in order to be explored in full detail. To demonstrate the system’s capabilities for detailed dynamic text stream exploration, we present a use case with real news data about the Arabic Uprising in 2011.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

News stream analysis, topic evolution, dynamic visualization, text analytics

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690KRSTAJIC, Milos, Mohammad NAJM-ARAGHI, Florian MANSMANN, Daniel A. KEIM, 2013. Story Tracker : incremental visual text analytics of news story development. In: Information Visualization. 2013, 12(3-4), pp. 308-323. ISSN 1473-8716. eISSN 1473-8724. Available under: doi: 10.1177/1473871613493996
BibTex
@article{Krstajic2013Story-26224,
  year={2013},
  doi={10.1177/1473871613493996},
  title={Story Tracker : incremental visual text analytics of news story development},
  number={3-4},
  volume={12},
  issn={1473-8716},
  journal={Information Visualization},
  pages={308--323},
  author={Krstajic, Milos and Najm-Araghi, Mohammad and Mansmann, Florian and Keim, Daniel A.}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/26224">
    <dcterms:abstract xml:lang="eng">Online news sources produce thousands of news articles every day, reporting on local and global real-world events. New information quickly replaces the old, making it difficult for readers to put current events in the context of the past. The stories about these events have complex relationships and characteristics that are difficult to model: they can be weakly or strongly related or they can merge or split over time. In this article, we present a visual analytics system for temporal analysis of news stories in dynamic information streams, which combines interactive visualization and text mining techniques to facilitate the analysis of similar topics that split and merge over time. Text clustering algorithms extract stories from online news streams in consecutive time windows and identify similar stories from the past. The stories are displayed in a visualization, which (1) sorts the stories by minimizing clutter and overlap from edge crossings, (2) shows their temporal characteristics in different time frames with different levels of detail, and (3) allows incremental updates of the display without recalculating the past data. Stories can be interactively filtered by their duration and connectivity in order to be explored in full detail. To demonstrate the system’s capabilities for detailed dynamic text stream exploration, we present a use case with real news data about the Arabic Uprising in 2011.</dcterms:abstract>
    <dc:contributor>Mansmann, Florian</dc:contributor>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/26224/2/Krstajic_262244.pdf"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Najm-Araghi, Mohammad</dc:creator>
    <dc:contributor>Najm-Araghi, Mohammad</dc:contributor>
    <dc:creator>Krstajic, Milos</dc:creator>
    <dc:creator>Mansmann, Florian</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:issued>2013</dcterms:issued>
    <dc:contributor>Krstajic, Milos</dc:contributor>
    <dcterms:title>Story Tracker : incremental visual text analytics of news story development</dcterms:title>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-02-08T06:53:57Z</dcterms:available>
    <dc:creator>Keim, Daniel A.</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-02-08T06:53:57Z</dc:date>
    <dcterms:bibliographicCitation>Information Visualization ; 12 (2013), 3-4. - S. 308-323</dcterms:bibliographicCitation>
    <dc:rights>terms-of-use</dc:rights>
    <dc:contributor>Keim, Daniel A.</dc:contributor>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/26224"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/26224/2/Krstajic_262244.pdf"/>
    <dc:language>eng</dc:language>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen