Publikation:

Matched wake Analysis : Finding causal relationships in spatiotemporal event data

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2014

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Political Geography. 2014, 41, pp. 1-10. ISSN 0962-6298. eISSN 1873-5096. Available under: doi: 10.1016/j.polgeo.2014.03.001

Zusammenfassung

This paper introduces a new method for finding causal relationships in spatiotemporal event data with potential applications in conflict research, criminology, and epidemiology. The method analyzes how different types of interventions affect subsequent levels of reactive events. Sliding spatiotemporal windows and statistical matching are used for robust and clean causal inference. Thereby, two well-described empirical problems in establishing causal relationships in event data analysis are resolved: the modifiable areal unit problem and selection bias. The paper presents the method formally and demonstrates its effectiveness in Monte Carlo simulations and an empirical example by showing how instances of civilian assistance to US forces changed in response to indiscriminate insurgent violence in Iraq.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
320 Politik

Schlagwörter

Quantitative methods, GIS analysis, Civil war, Indiscriminate violence, Causal inference

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690SCHUTTE, Sebastian, Karsten DONNAY, 2014. Matched wake Analysis : Finding causal relationships in spatiotemporal event data. In: Political Geography. 2014, 41, pp. 1-10. ISSN 0962-6298. eISSN 1873-5096. Available under: doi: 10.1016/j.polgeo.2014.03.001
BibTex
@article{Schutte2014Match-36237,
  year={2014},
  doi={10.1016/j.polgeo.2014.03.001},
  title={Matched wake Analysis : Finding causal relationships in spatiotemporal event data},
  volume={41},
  issn={0962-6298},
  journal={Political Geography},
  pages={1--10},
  author={Schutte, Sebastian and Donnay, Karsten}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36237">
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2016-12-08T13:25:18Z</dc:date>
    <dc:contributor>Schutte, Sebastian</dc:contributor>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Schutte, Sebastian</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/36237"/>
    <dc:contributor>Donnay, Karsten</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52"/>
    <dc:creator>Donnay, Karsten</dc:creator>
    <dc:language>eng</dc:language>
    <dcterms:abstract xml:lang="eng">This paper introduces a new method for finding causal relationships in spatiotemporal event data with potential applications in conflict research, criminology, and epidemiology. The method analyzes how different types of interventions affect subsequent levels of reactive events. Sliding spatiotemporal windows and statistical matching are used for robust and clean causal inference. Thereby, two well-described empirical problems in establishing causal relationships in event data analysis are resolved: the modifiable areal unit problem and selection bias. The paper presents the method formally and demonstrates its effectiveness in Monte Carlo simulations and an empirical example by showing how instances of civilian assistance to US forces changed in response to indiscriminate insurgent violence in Iraq.</dcterms:abstract>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52"/>
    <dcterms:issued>2014</dcterms:issued>
    <dcterms:title>Matched wake Analysis : Finding causal relationships in spatiotemporal event data</dcterms:title>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2016-12-08T13:25:18Z</dcterms:available>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen