Publikation: Synthetic data generation for optical flow evaluation in the neurosurgical domain
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Towards computer-assisted neurosurgery, scene understanding algorithms for microscope video data are required. Previous work utilizes optical flow to extract spatiotemporal context from neurosurgical video sequences. However, to select an appropriate optical flow method, we need to analyze which algorithm yields the highest accuracy for the neurosurgical domain. Currently, there are no benchmark datasets available for neurosurgery. In our work, we present an approach to generate synthetic data for optical flow evaluation on the neurosurgical domain. We simulate image sequences and thereby take into account domainspecific visual conditions such as surgical instrument motion. Then, we evaluate two optical flow algorithms, Farneback and PWC-Net, on our synthetic data. Qualitative and quantitative assessments confirm that our data can be used to evaluate optical flow for the neurosurgical domain. Future work will concentrate on extending the method by modeling additional effects in neurosurgery such as elastic background motion.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
PHILIPP, Markus, Neal BACHER, Jonas NIENHAUS, Lars HAUPTMANN, Laura LANG, Anna ALPEROVICH, Marielena GUTT-WILL, Andrea MATHIS, Stefan SAUR, Andreas RAABE, Franziska MATHIS-ULLRICH, 2021. Synthetic data generation for optical flow evaluation in the neurosurgical domain. In: Current Directions in Biomedical Engineering. De Gruyter. 2021, 7(1), pp. 67-71. eISSN 2364-5504. Available under: doi: 10.1515/cdbme-2021-1015BibTex
@article{Philipp2021-08-27Synth-56384, year={2021}, doi={10.1515/cdbme-2021-1015}, title={Synthetic data generation for optical flow evaluation in the neurosurgical domain}, number={1}, volume={7}, journal={Current Directions in Biomedical Engineering}, pages={67--71}, author={Philipp, Markus and Bacher, Neal and Nienhaus, Jonas and Hauptmann, Lars and Lang, Laura and Alperovich, Anna and Gutt-Will, Marielena and Mathis, Andrea and Saur, Stefan and Raabe, Andreas and Mathis-Ullrich, Franziska} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/56384"> <dc:contributor>Bacher, Neal</dc:contributor> <dc:contributor>Gutt-Will, Marielena</dc:contributor> <dc:contributor>Lang, Laura</dc:contributor> <dcterms:issued>2021-08-27</dcterms:issued> <dc:creator>Mathis-Ullrich, Franziska</dc:creator> <dc:creator>Mathis, Andrea</dc:creator> <dc:language>eng</dc:language> <dc:creator>Nienhaus, Jonas</dc:creator> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/56384"/> <dc:rights>Attribution 4.0 International</dc:rights> <dc:contributor>Mathis, Andrea</dc:contributor> <dc:creator>Saur, Stefan</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-01-28T09:38:35Z</dc:date> <dc:creator>Lang, Laura</dc:creator> <dc:contributor>Raabe, Andreas</dc:contributor> <dc:creator>Alperovich, Anna</dc:creator> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/56384/3/Philipp_2-at57mr73fomd8.pdf"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:contributor>Philipp, Markus</dc:contributor> <dc:creator>Bacher, Neal</dc:creator> <dc:creator>Gutt-Will, Marielena</dc:creator> <dc:creator>Raabe, Andreas</dc:creator> <dc:contributor>Saur, Stefan</dc:contributor> <dcterms:title>Synthetic data generation for optical flow evaluation in the neurosurgical domain</dcterms:title> <dc:contributor>Nienhaus, Jonas</dc:contributor> <dc:contributor>Hauptmann, Lars</dc:contributor> <dc:contributor>Mathis-Ullrich, Franziska</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-01-28T09:38:35Z</dcterms:available> <dcterms:abstract xml:lang="eng">Towards computer-assisted neurosurgery, scene understanding algorithms for microscope video data are required. Previous work utilizes optical flow to extract spatiotemporal context from neurosurgical video sequences. However, to select an appropriate optical flow method, we need to analyze which algorithm yields the highest accuracy for the neurosurgical domain. Currently, there are no benchmark datasets available for neurosurgery. In our work, we present an approach to generate synthetic data for optical flow evaluation on the neurosurgical domain. We simulate image sequences and thereby take into account domainspecific visual conditions such as surgical instrument motion. Then, we evaluate two optical flow algorithms, Farneback and PWC-Net, on our synthetic data. Qualitative and quantitative assessments confirm that our data can be used to evaluate optical flow for the neurosurgical domain. Future work will concentrate on extending the method by modeling additional effects in neurosurgery such as elastic background motion.</dcterms:abstract> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/56384/3/Philipp_2-at57mr73fomd8.pdf"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:creator>Philipp, Markus</dc:creator> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/> <dc:creator>Hauptmann, Lars</dc:creator> <dc:contributor>Alperovich, Anna</dc:contributor> </rdf:Description> </rdf:RDF>