Synthetic data generation for optical flow evaluation in the neurosurgical domain
Synthetic data generation for optical flow evaluation in the neurosurgical domain
Loading...
Date
2021
Authors
Philipp, Markus
Bacher, Neal
Nienhaus, Jonas
Hauptmann, Lars
Lang, Laura
Gutt-Will, Marielena
Mathis, Andrea
Saur, Stefan
Raabe, Andreas
Editors
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
URI (citable link)
DOI (citable link)
International patent number
Link to the license
EU project number
Project
Open Access publication
Collections
Title in another language
Publication type
Journal article
Publication status
Published
Published in
Current Directions in Biomedical Engineering ; 7 (2021), 1. - pp. 67-71. - De Gruyter. - eISSN 2364-5504
Abstract
Towards computer-assisted neurosurgery, scene understanding algorithms for microscope video data are required. Previous work utilizes optical flow to extract spatiotemporal context from neurosurgical video sequences. However, to select an appropriate optical flow method, we need to analyze which algorithm yields the highest accuracy for the neurosurgical domain. Currently, there are no benchmark datasets available for neurosurgery. In our work, we present an approach to generate synthetic data for optical flow evaluation on the neurosurgical domain. We simulate image sequences and thereby take into account domainspecific visual conditions such as surgical instrument motion. Then, we evaluate two optical flow algorithms, Farneback and PWC-Net, on our synthetic data. Qualitative and quantitative assessments confirm that our data can be used to evaluate optical flow for the neurosurgical domain. Future work will concentrate on extending the method by modeling additional effects in neurosurgery such as elastic background motion.
Summary in another language
Subject (DDC)
004 Computer Science
Keywords
Neurosurgery, surgical microscope, optical flow, evaluation
Conference
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690
PHILIPP, Markus, Neal BACHER, Jonas NIENHAUS, Lars HAUPTMANN, Laura LANG, Anna ALPEROVICH, Marielena GUTT-WILL, Andrea MATHIS, Stefan SAUR, Andreas RAABE, Franziska MATHIS-ULLRICH, 2021. Synthetic data generation for optical flow evaluation in the neurosurgical domain. In: Current Directions in Biomedical Engineering. De Gruyter. 7(1), pp. 67-71. eISSN 2364-5504. Available under: doi: 10.1515/cdbme-2021-1015BibTex
@article{Philipp2021-08-27Synth-56384, year={2021}, doi={10.1515/cdbme-2021-1015}, title={Synthetic data generation for optical flow evaluation in the neurosurgical domain}, number={1}, volume={7}, journal={Current Directions in Biomedical Engineering}, pages={67--71}, author={Philipp, Markus and Bacher, Neal and Nienhaus, Jonas and Hauptmann, Lars and Lang, Laura and Alperovich, Anna and Gutt-Will, Marielena and Mathis, Andrea and Saur, Stefan and Raabe, Andreas and Mathis-Ullrich, Franziska} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/56384"> <dc:contributor>Bacher, Neal</dc:contributor> <dc:contributor>Gutt-Will, Marielena</dc:contributor> <dc:contributor>Lang, Laura</dc:contributor> <dcterms:issued>2021-08-27</dcterms:issued> <dc:creator>Mathis-Ullrich, Franziska</dc:creator> <dc:creator>Mathis, Andrea</dc:creator> <dc:language>eng</dc:language> <dc:creator>Nienhaus, Jonas</dc:creator> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/56384"/> <dc:rights>Attribution 4.0 International</dc:rights> <dc:contributor>Mathis, Andrea</dc:contributor> <dc:creator>Saur, Stefan</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-01-28T09:38:35Z</dc:date> <dc:creator>Lang, Laura</dc:creator> <dc:contributor>Raabe, Andreas</dc:contributor> <dc:creator>Alperovich, Anna</dc:creator> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/56384/3/Philipp_2-at57mr73fomd8.pdf"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:contributor>Philipp, Markus</dc:contributor> <dc:creator>Bacher, Neal</dc:creator> <dc:creator>Gutt-Will, Marielena</dc:creator> <dc:creator>Raabe, Andreas</dc:creator> <dc:contributor>Saur, Stefan</dc:contributor> <dcterms:title>Synthetic data generation for optical flow evaluation in the neurosurgical domain</dcterms:title> <dc:contributor>Nienhaus, Jonas</dc:contributor> <dc:contributor>Hauptmann, Lars</dc:contributor> <dc:contributor>Mathis-Ullrich, Franziska</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-01-28T09:38:35Z</dcterms:available> <dcterms:abstract xml:lang="eng">Towards computer-assisted neurosurgery, scene understanding algorithms for microscope video data are required. Previous work utilizes optical flow to extract spatiotemporal context from neurosurgical video sequences. However, to select an appropriate optical flow method, we need to analyze which algorithm yields the highest accuracy for the neurosurgical domain. Currently, there are no benchmark datasets available for neurosurgery. In our work, we present an approach to generate synthetic data for optical flow evaluation on the neurosurgical domain. We simulate image sequences and thereby take into account domainspecific visual conditions such as surgical instrument motion. Then, we evaluate two optical flow algorithms, Farneback and PWC-Net, on our synthetic data. Qualitative and quantitative assessments confirm that our data can be used to evaluate optical flow for the neurosurgical domain. Future work will concentrate on extending the method by modeling additional effects in neurosurgery such as elastic background motion.</dcterms:abstract> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/56384/3/Philipp_2-at57mr73fomd8.pdf"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:creator>Philipp, Markus</dc:creator> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/> <dc:creator>Hauptmann, Lars</dc:creator> <dc:contributor>Alperovich, Anna</dc:contributor> </rdf:Description> </rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Examination date of dissertation
Method of financing
Comment on publication
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
No
Refereed
Yes