Publikation:

Computing Hermitian determinantal representations of hyperbolic curves

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2015

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

International Journal of Algebra and Computation. 2015, 25(8), pp. 1327-1336. ISSN 0218-1967. Available under: doi: 10.1142/S0218196715500435

Zusammenfassung

Every real hyperbolic form in three variables can be realized as the determinant of a linear net of Hermitian matrices containing a positive definite matrix. Such representations are an algebraic certificate for the hyperbolicity of the polynomial and their existence has been proved in several different ways. However, the resulting algorithms for computing determinantal representations are computationally intensive. In this note, we present an algorithm that reduces a large part of the problem to linear algebra and discuss its numerical implementation.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690PLAUMANN, Daniel, Rainer SINN, David E. SPEYER, Cynthia VINZANT, 2015. Computing Hermitian determinantal representations of hyperbolic curves. In: International Journal of Algebra and Computation. 2015, 25(8), pp. 1327-1336. ISSN 0218-1967. Available under: doi: 10.1142/S0218196715500435
BibTex
@article{Plaumann2015Compu-31289,
  year={2015},
  doi={10.1142/S0218196715500435},
  title={Computing Hermitian determinantal representations of hyperbolic curves},
  number={8},
  volume={25},
  issn={0218-1967},
  journal={International Journal of Algebra and Computation},
  pages={1327--1336},
  author={Plaumann, Daniel and Sinn, Rainer and Speyer, David E. and Vinzant, Cynthia}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/31289">
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Sinn, Rainer</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52"/>
    <dc:contributor>Speyer, David E.</dc:contributor>
    <dcterms:issued>2015</dcterms:issued>
    <dcterms:abstract xml:lang="eng">Every real hyperbolic form in three variables can be realized as the determinant of a linear net of Hermitian matrices containing a positive definite matrix. Such representations are an algebraic certificate for the hyperbolicity of the polynomial and their existence has been proved in several different ways. However, the resulting algorithms for computing determinantal representations are computationally intensive. In this note, we present an algorithm that reduces a large part of the problem to linear algebra and discuss its numerical implementation.</dcterms:abstract>
    <dcterms:title>Computing Hermitian determinantal representations of hyperbolic curves</dcterms:title>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:creator>Vinzant, Cynthia</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2016-04-27T08:52:14Z</dcterms:available>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Plaumann, Daniel</dc:creator>
    <dc:contributor>Plaumann, Daniel</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52"/>
    <dc:contributor>Sinn, Rainer</dc:contributor>
    <dc:contributor>Vinzant, Cynthia</dc:contributor>
    <dc:language>eng</dc:language>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/31289"/>
    <dc:creator>Speyer, David E.</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2016-04-27T08:52:14Z</dc:date>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen

Versionsgeschichte

Gerade angezeigt 1 - 2 von 2
VersionDatumZusammenfassung
2*
2016-04-27 08:50:13
2015-06-25 12:20:31
* Ausgewählte Version