Computing Hermitian determinantal representations of hyperbolic curves

Lade...
Vorschaubild
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2015
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
International Journal of Algebra and Computation. 2015, 25(8), pp. 1327-1336. ISSN 0218-1967. Available under: doi: 10.1142/S0218196715500435
Zusammenfassung

Every real hyperbolic form in three variables can be realized as the determinant of a linear net of Hermitian matrices containing a positive definite matrix. Such representations are an algebraic certificate for the hyperbolicity of the polynomial and their existence has been proved in several different ways. However, the resulting algorithms for computing determinantal representations are computationally intensive. In this note, we present an algorithm that reduces a large part of the problem to linear algebra and discuss its numerical implementation.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
510 Mathematik
Schlagwörter
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690PLAUMANN, Daniel, Rainer SINN, David E. SPEYER, Cynthia VINZANT, 2015. Computing Hermitian determinantal representations of hyperbolic curves. In: International Journal of Algebra and Computation. 2015, 25(8), pp. 1327-1336. ISSN 0218-1967. Available under: doi: 10.1142/S0218196715500435
BibTex
@article{Plaumann2015Compu-31289,
  year={2015},
  doi={10.1142/S0218196715500435},
  title={Computing Hermitian determinantal representations of hyperbolic curves},
  number={8},
  volume={25},
  issn={0218-1967},
  journal={International Journal of Algebra and Computation},
  pages={1327--1336},
  author={Plaumann, Daniel and Sinn, Rainer and Speyer, David E. and Vinzant, Cynthia}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/31289">
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Sinn, Rainer</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52"/>
    <dc:contributor>Speyer, David E.</dc:contributor>
    <dcterms:issued>2015</dcterms:issued>
    <dcterms:abstract xml:lang="eng">Every real hyperbolic form in three variables can be realized as the determinant of a linear net of Hermitian matrices containing a positive definite matrix. Such representations are an algebraic certificate for the hyperbolicity of the polynomial and their existence has been proved in several different ways. However, the resulting algorithms for computing determinantal representations are computationally intensive. In this note, we present an algorithm that reduces a large part of the problem to linear algebra and discuss its numerical implementation.</dcterms:abstract>
    <dcterms:title>Computing Hermitian determinantal representations of hyperbolic curves</dcterms:title>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:creator>Vinzant, Cynthia</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2016-04-27T08:52:14Z</dcterms:available>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Plaumann, Daniel</dc:creator>
    <dc:contributor>Plaumann, Daniel</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52"/>
    <dc:contributor>Sinn, Rainer</dc:contributor>
    <dc:contributor>Vinzant, Cynthia</dc:contributor>
    <dc:language>eng</dc:language>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/31289"/>
    <dc:creator>Speyer, David E.</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2016-04-27T08:52:14Z</dc:date>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen

Versionsgeschichte

Gerade angezeigt 1 - 2 von 2
VersionDatumZusammenfassung
2*
2016-04-27 08:50:13
2015-06-25 12:20:31
* Ausgewählte Version