Classical Incompressible Fluid Dynamics as a Limit of Relativistic Compressible Fluid Dynamics

No Thumbnail Available
Files
There are no files associated with this item.
Date
2019
Editors
Contact
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
URI (citable link)
DOI (citable link)
ArXiv-ID
International patent number
Link to the license
oops
EU project number
Project
Open Access publication
Restricted until
Title in another language
Research Projects
Organizational Units
Journal Issue
Publication type
Journal article
Publication status
Published
Published in
Archive for Rational Mechanics and Analysis ; 231 (2019), 3. - pp. 1801-1809. - ISSN 0003-9527. - eISSN 1432-0673
Abstract
Properly scaled, the relativistic Euler system for an arbitrary isentropic, causally compressible fluid is shown to formally converge, as c → ∞, to the non-relativistic Euler system for the homogeneously incompressible fluid. The limit is particularly interesting in the case of the relativistic stiff fluid, for which all modes are linearly degenerate in the sense of the theory of hyperbolic systems of conservation laws. This case connects the continuation problem for regular solutions to the incompressible version of the classical Euler equations with the old conjecture that for hyperbolic systems linear degeneracy of all modes prevent gradient blowup. One could say that questions in two different areas of the theory of partial differential equations are linked to each other through Einstein’s theory of relativity.
Summary in another language
Subject (DDC)
510 Mathematics
Keywords
Conference
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690FREISTÜHLER, Heinrich, 2019. Classical Incompressible Fluid Dynamics as a Limit of Relativistic Compressible Fluid Dynamics. In: Archive for Rational Mechanics and Analysis. 231(3), pp. 1801-1809. ISSN 0003-9527. eISSN 1432-0673. Available under: doi: 10.1007/s00205-018-1310-9
BibTex
@article{Freistuhler2019-03Class-44893,
  year={2019},
  doi={10.1007/s00205-018-1310-9},
  title={Classical Incompressible Fluid Dynamics as a Limit of Relativistic Compressible Fluid Dynamics},
  number={3},
  volume={231},
  issn={0003-9527},
  journal={Archive for Rational Mechanics and Analysis},
  pages={1801--1809},
  author={Freistühler, Heinrich}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/44893">
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:title>Classical Incompressible Fluid Dynamics as a Limit of Relativistic Compressible Fluid Dynamics</dcterms:title>
    <dc:language>eng</dc:language>
    <dcterms:abstract xml:lang="eng">Properly scaled, the relativistic Euler system for an arbitrary isentropic, causally compressible fluid is shown to formally converge, as c → ∞, to the non-relativistic Euler system for the homogeneously incompressible fluid. The limit is particularly interesting in the case of the relativistic stiff fluid, for which all modes are linearly degenerate in the sense of the theory of hyperbolic systems of conservation laws. This case connects the continuation problem for regular solutions to the incompressible version of the classical Euler equations with the old conjecture that for hyperbolic systems linear degeneracy of all modes prevent gradient blowup. One could say that questions in two different areas of the theory of partial differential equations are linked to each other through Einstein’s theory of relativity.</dcterms:abstract>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/44893"/>
    <dcterms:issued>2019-03</dcterms:issued>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-02-07T10:00:26Z</dc:date>
    <dc:contributor>Freistühler, Heinrich</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-02-07T10:00:26Z</dcterms:available>
    <dc:creator>Freistühler, Heinrich</dc:creator>
  </rdf:Description>
</rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Contact
URL of original publication
Test date of URL
Examination date of dissertation
Method of financing
Comment on publication
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
Yes
Refereed
Unknown