Investigating the Sketchplan : A Novel Way of Identifying Tactical Behavior in Massive Soccer Datasets

Lade...
Vorschaubild
Dateien
Seebacher_2-b2gumppw7pst7.pdf
Seebacher_2-b2gumppw7pst7.pdfGröße: 1.82 MBDownloads: 87
Datum
2023
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Zusammenfassung

Coaches and analysts prepare for upcoming matches by identifying common patterns in the positioning and movement of the competing teams in specific situations. Existing approaches in this domain typically rely on manual video analysis and formation discussion using whiteboards; or expert systems that rely on state-of-the-art video and trajectory visualization techniques and advanced user interaction. We bridge the gap between these approaches by contributing a light-weight, simplified interaction and visualization system, which we conceptualized in an iterative design study with the coaching team of a European first league soccer team. Our approach is walk-up usable by all domain stakeholders, and at the same time, can leverage advanced data retrieval and analysis techniques: a virtual magnetic tactic-board. Users place and move digital magnets on a virtual tactic-board, and these interactions get translated to spatio-temporal queries, used to retrieve relevant situations from massive team movement data. Despite such seemingly imprecise query input, our approach is highly usable, supports quick user exploration, and retrieval of relevant results via query relaxation. Appropriate simplified result visualization supports in-depth analyses to explore team behavior, such as formation detection, movement analysis, and what-if analysis. We evaluated our approach with several experts from European first league soccer clubs. The results show that our approach makes the complex analytical processes needed for the identification of tactical behavior directly accessible to domain experts for the first time, demonstrating our support of coaches in preparation for future encounters.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
004 Informatik
Schlagwörter
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690SEEBACHER, Daniel, Tom POLK, Halldor JANETZKO, Daniel A. KEIM, Tobias SCHRECK, Manuel STEIN, 2023. Investigating the Sketchplan : A Novel Way of Identifying Tactical Behavior in Massive Soccer Datasets. In: IEEE Transactions on Visualization and Computer Graphics. IEEE. 2023, 29(4), pp. 1920-1936. ISSN 1077-2626. eISSN 1941-0506. Available under: doi: 10.1109/TVCG.2021.3134814
BibTex
@article{Seebacher2023Inves-55956,
  year={2023},
  doi={10.1109/TVCG.2021.3134814},
  title={Investigating the Sketchplan : A Novel Way of Identifying Tactical Behavior in Massive Soccer Datasets},
  number={4},
  volume={29},
  issn={1077-2626},
  journal={IEEE Transactions on Visualization and Computer Graphics},
  pages={1920--1936},
  author={Seebacher, Daniel and Polk, Tom and Janetzko, Halldor and Keim, Daniel A. and Schreck, Tobias and Stein, Manuel}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/55956">
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:title>Investigating the Sketchplan : A Novel Way of Identifying Tactical Behavior in Massive Soccer Datasets</dcterms:title>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/55956"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Schreck, Tobias</dc:creator>
    <dc:contributor>Janetzko, Halldor</dc:contributor>
    <dc:creator>Stein, Manuel</dc:creator>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/55956/1/Seebacher_2-b2gumppw7pst7.pdf"/>
    <dc:creator>Polk, Tom</dc:creator>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:rights>terms-of-use</dc:rights>
    <dc:creator>Janetzko, Halldor</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-12-21T10:39:53Z</dc:date>
    <dc:creator>Keim, Daniel A.</dc:creator>
    <dc:contributor>Stein, Manuel</dc:contributor>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/55956/1/Seebacher_2-b2gumppw7pst7.pdf"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>Keim, Daniel A.</dc:contributor>
    <dcterms:issued>2023</dcterms:issued>
    <dcterms:abstract xml:lang="eng">Coaches and analysts prepare for upcoming matches by identifying common patterns in the positioning and movement of the competing teams in specific situations. Existing approaches in this domain typically rely on manual video analysis and formation discussion using whiteboards; or expert systems that rely on state-of-the-art video and trajectory visualization techniques and advanced user interaction. We bridge the gap between these approaches by contributing a light-weight, simplified interaction and visualization system, which we conceptualized in an iterative design study with the coaching team of a European first league soccer team. Our approach is walk-up usable by all domain stakeholders, and at the same time, can leverage advanced data retrieval and analysis techniques: a virtual magnetic tactic-board. Users place and move digital magnets on a virtual tactic-board, and these interactions get translated to spatio-temporal queries, used to retrieve relevant situations from massive team movement data. Despite such seemingly imprecise query input, our approach is highly usable, supports quick user exploration, and retrieval of relevant results via query relaxation. Appropriate simplified result visualization supports in-depth analyses to explore team behavior, such as formation detection, movement analysis, and what-if analysis. We evaluated our approach with several experts from European first league soccer clubs. The results show that our approach makes the complex analytical processes needed for the identification of tactical behavior directly accessible to domain experts for the first time, demonstrating our support of coaches in preparation for future encounters.</dcterms:abstract>
    <dc:contributor>Schreck, Tobias</dc:contributor>
    <dc:language>eng</dc:language>
    <dc:contributor>Polk, Tom</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-12-21T10:39:53Z</dcterms:available>
    <dc:creator>Seebacher, Daniel</dc:creator>
    <dc:contributor>Seebacher, Daniel</dc:contributor>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen