Publikation:

Problems with products? : Control strategies for models with interaction and quadratic effects

Lade...
Vorschaubild

Dateien

Beiser-McGrath_2-b30apzma9p2d6.pdf
Beiser-McGrath_2-b30apzma9p2d6.pdfGröße: 1.49 MBDownloads: 275

Datum

2020

Autor:innen

Beiser-McGrath, Liam F.

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Link zur Lizenz

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Hybrid
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Political Science Research and Methods. Cambridge University Press. 2020, 8(4), pp. 707-730. ISSN 2049-8470. eISSN 2049-8489. Available under: doi: 10.1017/psrm.2020.17

Zusammenfassung

Models testing interactive and quadratic hypotheses are common in Political Science but control strategies for these models have received little attention. Common practice is to simply include additive control variables, without relevant product terms, into models with interaction or quadratic terms. In this paper, we show in Monte Carlos that interaction terms can absorb the effects of other un-modeled interaction and non-linear effects and analogously, that included quadratic terms can reflect omitted interactions and non-linearities. This problem even occurs when included and omitted product terms do not share any constitutive terms. We show with Monte Carlo experiments that regularized estimators, the adaptive Lasso, Kernel Regularized Least Squares (KRLS), and Bayesian Additive Regression Trees (BART) can prevent the misattribution of interactive/quadratic effects, minimize the problems of efficiency loss and overfitting, and have low false-positive rates. We illustrate how inferences drawn can change when relevant product terms are used in the control strategy using a recent paper. Implementing the recommendations of this paper would increase the reliability of conditional and non-linear relationships estimated in many papers in the literature.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
320 Politik

Schlagwörter

interaction effects; non-linear effects; model misspecification; machine learning; replication

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690BEISER, Janina, Liam F. BEISER-MCGRATH, 2020. Problems with products? : Control strategies for models with interaction and quadratic effects. In: Political Science Research and Methods. Cambridge University Press. 2020, 8(4), pp. 707-730. ISSN 2049-8470. eISSN 2049-8489. Available under: doi: 10.1017/psrm.2020.17
BibTex
@article{Beiser2020-10Probl-50566,
  year={2020},
  doi={10.1017/psrm.2020.17},
  title={Problems with products? : Control strategies for models with interaction and quadratic effects},
  number={4},
  volume={8},
  issn={2049-8470},
  journal={Political Science Research and Methods},
  pages={707--730},
  author={Beiser, Janina and Beiser-McGrath, Liam F.}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/50566">
    <dc:contributor>Beiser, Janina</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:contributor>Beiser-McGrath, Liam F.</dc:contributor>
    <dc:creator>Beiser-McGrath, Liam F.</dc:creator>
    <dcterms:title>Problems with products? : Control strategies for models with interaction and quadratic effects</dcterms:title>
    <dc:language>eng</dc:language>
    <dc:creator>Beiser, Janina</dc:creator>
    <dcterms:abstract xml:lang="eng">Models testing interactive and quadratic hypotheses are common in Political Science but control strategies for these models have received little attention. Common practice is to simply include additive control variables, without relevant product terms, into models with interaction or quadratic terms. In this paper, we show in Monte Carlos that interaction terms can absorb the effects of other un-modeled interaction and non-linear effects and analogously, that included quadratic terms can reflect omitted interactions and non-linearities. This problem even occurs when included and omitted product terms do not share any constitutive terms. We show with Monte Carlo experiments that regularized estimators, the adaptive Lasso, Kernel Regularized Least Squares (KRLS), and Bayesian Additive Regression Trees (BART) can prevent the misattribution of interactive/quadratic effects, minimize the problems of efficiency loss and overfitting, and have low false-positive rates. We illustrate how inferences drawn can change when relevant product terms are used in the control strategy using a recent paper. Implementing the recommendations of this paper would increase the reliability of conditional and non-linear relationships estimated in many papers in the literature.</dcterms:abstract>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-08-25T13:02:21Z</dc:date>
    <dcterms:issued>2020-10</dcterms:issued>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/50566/1/Beiser-McGrath_2-b30apzma9p2d6.pdf"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/50566/1/Beiser-McGrath_2-b30apzma9p2d6.pdf"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/50566"/>
    <dc:rights>Attribution-NonCommercial-ShareAlike 4.0 International</dc:rights>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc-sa/4.0/"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-08-25T13:02:21Z</dcterms:available>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen