Problems with products? : Control strategies for models with interaction and quadratic effects

Lade...
Vorschaubild
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2020
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
ArXiv-ID
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Hybrid
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Political Science Research and Methods. Cambridge University Press. 2020, 8(4), pp. 707-730. ISSN 2049-8470. eISSN 2049-8489. Available under: doi: 10.1017/psrm.2020.17
Zusammenfassung

Models testing interactive and quadratic hypotheses are common in Political Science but control strategies for these models have received little attention. Common practice is to simply include additive control variables, without relevant product terms, into models with interaction or quadratic terms. In this paper, we show in Monte Carlos that interaction terms can absorb the effects of other un-modeled interaction and non-linear effects and analogously, that included quadratic terms can reflect omitted interactions and non-linearities. This problem even occurs when included and omitted product terms do not share any constitutive terms. We show with Monte Carlo experiments that regularized estimators, the adaptive Lasso, Kernel Regularized Least Squares (KRLS), and Bayesian Additive Regression Trees (BART) can prevent the misattribution of interactive/quadratic effects, minimize the problems of efficiency loss and overfitting, and have low false-positive rates. We illustrate how inferences drawn can change when relevant product terms are used in the control strategy using a recent paper. Implementing the recommendations of this paper would increase the reliability of conditional and non-linear relationships estimated in many papers in the literature.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
320 Politik
Schlagwörter
interaction effects; non-linear effects; model misspecification; machine learning; replication
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690BEISER, Janina, Liam F. BEISER-MCGRATH, 2020. Problems with products? : Control strategies for models with interaction and quadratic effects. In: Political Science Research and Methods. Cambridge University Press. 2020, 8(4), pp. 707-730. ISSN 2049-8470. eISSN 2049-8489. Available under: doi: 10.1017/psrm.2020.17
BibTex
@article{Beiser2020-10Probl-50566,
  year={2020},
  doi={10.1017/psrm.2020.17},
  title={Problems with products? : Control strategies for models with interaction and quadratic effects},
  number={4},
  volume={8},
  issn={2049-8470},
  journal={Political Science Research and Methods},
  pages={707--730},
  author={Beiser, Janina and Beiser-McGrath, Liam F.}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/50566">
    <dc:contributor>Beiser, Janina</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:contributor>Beiser-McGrath, Liam F.</dc:contributor>
    <dc:creator>Beiser-McGrath, Liam F.</dc:creator>
    <dcterms:title>Problems with products? : Control strategies for models with interaction and quadratic effects</dcterms:title>
    <dc:language>eng</dc:language>
    <dc:creator>Beiser, Janina</dc:creator>
    <dcterms:abstract xml:lang="eng">Models testing interactive and quadratic hypotheses are common in Political Science but control strategies for these models have received little attention. Common practice is to simply include additive control variables, without relevant product terms, into models with interaction or quadratic terms. In this paper, we show in Monte Carlos that interaction terms can absorb the effects of other un-modeled interaction and non-linear effects and analogously, that included quadratic terms can reflect omitted interactions and non-linearities. This problem even occurs when included and omitted product terms do not share any constitutive terms. We show with Monte Carlo experiments that regularized estimators, the adaptive Lasso, Kernel Regularized Least Squares (KRLS), and Bayesian Additive Regression Trees (BART) can prevent the misattribution of interactive/quadratic effects, minimize the problems of efficiency loss and overfitting, and have low false-positive rates. We illustrate how inferences drawn can change when relevant product terms are used in the control strategy using a recent paper. Implementing the recommendations of this paper would increase the reliability of conditional and non-linear relationships estimated in many papers in the literature.</dcterms:abstract>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-08-25T13:02:21Z</dc:date>
    <dcterms:issued>2020-10</dcterms:issued>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/50566/1/Beiser-McGrath_2-b30apzma9p2d6.pdf"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/50566/1/Beiser-McGrath_2-b30apzma9p2d6.pdf"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/50566"/>
    <dc:rights>Attribution-NonCommercial-ShareAlike 4.0 International</dc:rights>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc-sa/4.0/"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-08-25T13:02:21Z</dcterms:available>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen