The Prediction of Criminal Recidivism Using Routinely Available File Information
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Objective
The aim of the present study was to cross-validate the investigation of Buchanan and Leese (2006) into the prediction of criminal recidivism.
Method
The sample comprised offenders in the criminal justice system of the Canton of Zürich – Switzerland, who were discharged to the community. Participants were followed, and evidence of subsequent charges and convictions for both general and serious recidivism was investigated at fixed periods of 2.5, 6.5, and 10.5 years. The predictive validity of socio-demographic, criminal history, and legal class information was assessed using logistic regression as well as log-likelihood, receiver operating characteristic curve, and contingency analyses.
Results
A multivariable model including age and criminal history information was found to produce the highest rates of predictive validity for general and serious recidivism.
Conclusion
Information regularly accessible in forensic practice may be able to guide clinicians as to the recidivism risk level of their patients.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
FRIES, Diana, Astrid ROSSEGGER, Jérôme ENDRASS, Jay P. SINGH, 2013. The Prediction of Criminal Recidivism Using Routinely Available File Information. In: International Journal of Psychological Research. 2013, 6(2), pp. 8-14. ISSN 2011-2084. eISSN 2011-7922BibTex
@article{Fries2013Predi-38034, year={2013}, title={The Prediction of Criminal Recidivism Using Routinely Available File Information}, url={http://revistas.usb.edu.co/index.php/IJPR/article/view/671}, number={2}, volume={6}, issn={2011-2084}, journal={International Journal of Psychological Research}, pages={8--14}, author={Fries, Diana and Rossegger, Astrid and Endrass, Jérôme and Singh, Jay P.} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/38034"> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-03-17T09:29:17Z</dcterms:available> <dc:contributor>Rossegger, Astrid</dc:contributor> <dcterms:abstract xml:lang="eng">Objective<br />
 The aim of the present study was to cross-validate the investigation of Buchanan and Leese (2006) into the prediction of criminal recidivism.<br /><br />
 Method<br />
 The sample comprised offenders in the criminal justice system of the Canton of Zürich – Switzerland, who were discharged to the community. Participants were followed, and evidence of subsequent charges and convictions for both general and serious recidivism was investigated at fixed periods of 2.5, 6.5, and 10.5 years. The predictive validity of socio-demographic, criminal history, and legal class information was assessed using logistic regression as well as log-likelihood, receiver operating characteristic curve, and contingency analyses.<br /><br />
 Results<br />
 A multivariable model including age and criminal history information was found to produce the highest rates of predictive validity for general and serious recidivism.<br /><br />Conclusion<br />Information regularly accessible in forensic practice may be able to guide clinicians as to the recidivism risk level of their patients.</dcterms:abstract> <dcterms:title>The Prediction of Criminal Recidivism Using Routinely Available File Information</dcterms:title> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Rossegger, Astrid</dc:creator> <dc:rights>Attribution-NonCommercial-NoDerivatives 4.0 International</dc:rights> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/38034/3/Fries_0-378400.pdf"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43"/> <dc:creator>Endrass, Jérôme</dc:creator> <dc:contributor>Fries, Diana</dc:contributor> <dc:contributor>Endrass, Jérôme</dc:contributor> <dc:language>eng</dc:language> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/38034/3/Fries_0-378400.pdf"/> <dc:creator>Singh, Jay P.</dc:creator> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/38034"/> <dc:contributor>Singh, Jay P.</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-03-17T09:29:17Z</dc:date> <dc:creator>Fries, Diana</dc:creator> <dcterms:issued>2013</dcterms:issued> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc-nd/4.0/"/> </rdf:Description> </rdf:RDF>