The Prediction of Criminal Recidivism Using Routinely Available File Information

Lade...
Vorschaubild
Dateien
Fries_0-378400.pdf
Fries_0-378400.pdfGröße: 442.17 KBDownloads: 181
Datum
2013
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Gold
Sammlungen
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
International Journal of Psychological Research. 2013, 6(2), pp. 8-14. ISSN 2011-2084. eISSN 2011-7922
Zusammenfassung

Objective
The aim of the present study was to cross-validate the investigation of Buchanan and Leese (2006) into the prediction of criminal recidivism.

Method
The sample comprised offenders in the criminal justice system of the Canton of Zürich – Switzerland, who were discharged to the community. Participants were followed, and evidence of subsequent charges and convictions for both general and serious recidivism was investigated at fixed periods of 2.5, 6.5, and 10.5 years. The predictive validity of socio-demographic, criminal history, and legal class information was assessed using logistic regression as well as log-likelihood, receiver operating characteristic curve, and contingency analyses.

Results
A multivariable model including age and criminal history information was found to produce the highest rates of predictive validity for general and serious recidivism.

Conclusion
Information regularly accessible in forensic practice may be able to guide clinicians as to the recidivism risk level of their patients.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
150 Psychologie
Schlagwörter
Konferenz
Rezension
undefined / . - undefined, undefined
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Datensätze
Zitieren
ISO 690FRIES, Diana, Astrid ROSSEGGER, Jérôme ENDRASS, Jay P. SINGH, 2013. The Prediction of Criminal Recidivism Using Routinely Available File Information. In: International Journal of Psychological Research. 2013, 6(2), pp. 8-14. ISSN 2011-2084. eISSN 2011-7922
BibTex
@article{Fries2013Predi-38034,
  year={2013},
  title={The Prediction of Criminal Recidivism Using Routinely Available File Information},
  url={http://revistas.usb.edu.co/index.php/IJPR/article/view/671},
  number={2},
  volume={6},
  issn={2011-2084},
  journal={International Journal of Psychological Research},
  pages={8--14},
  author={Fries, Diana and Rossegger, Astrid and Endrass, Jérôme and Singh, Jay P.}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/38034">
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-03-17T09:29:17Z</dcterms:available>
    <dc:contributor>Rossegger, Astrid</dc:contributor>
    <dcterms:abstract xml:lang="eng">Objective&lt;br /&gt;&#xD;
The aim of the present study was to cross-validate the investigation of Buchanan and Leese (2006) into the prediction of criminal recidivism.&lt;br /&gt;&lt;br /&gt;&#xD;
Method&lt;br /&gt;&#xD;
The sample comprised offenders in the criminal justice system of the Canton of Zürich – Switzerland, who were discharged to the community. Participants were followed, and evidence of subsequent charges and convictions for both general and serious recidivism was investigated at fixed periods of 2.5, 6.5, and 10.5 years. The predictive validity of socio-demographic, criminal history, and legal class information was assessed using logistic regression as well as log-likelihood, receiver operating characteristic curve, and contingency analyses.&lt;br /&gt;&lt;br /&gt;&#xD;
Results&lt;br /&gt;&#xD;
A multivariable model including age and criminal history information was found to produce the highest rates of predictive validity for general and serious recidivism.&lt;br /&gt;&lt;br /&gt;Conclusion&lt;br /&gt;Information regularly accessible in forensic practice may be able to guide clinicians as to the recidivism risk level of their patients.</dcterms:abstract>
    <dcterms:title>The Prediction of Criminal Recidivism Using Routinely Available File Information</dcterms:title>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Rossegger, Astrid</dc:creator>
    <dc:rights>Attribution-NonCommercial-NoDerivatives 4.0 International</dc:rights>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/38034/3/Fries_0-378400.pdf"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43"/>
    <dc:creator>Endrass, Jérôme</dc:creator>
    <dc:contributor>Fries, Diana</dc:contributor>
    <dc:contributor>Endrass, Jérôme</dc:contributor>
    <dc:language>eng</dc:language>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/38034/3/Fries_0-378400.pdf"/>
    <dc:creator>Singh, Jay P.</dc:creator>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/38034"/>
    <dc:contributor>Singh, Jay P.</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-03-17T09:29:17Z</dc:date>
    <dc:creator>Fries, Diana</dc:creator>
    <dcterms:issued>2013</dcterms:issued>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc-nd/4.0/"/>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
Prüfdatum der URL
2017-03-17
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen