Publikation:

The Prediction of Criminal Recidivism Using Routinely Available File Information

Lade...
Vorschaubild

Dateien

Fries_0-378400.pdf
Fries_0-378400.pdfGröße: 442.17 KBDownloads: 197

Datum

2013

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Link zur Lizenz

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Gold
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

International Journal of Psychological Research. 2013, 6(2), pp. 8-14. ISSN 2011-2084. eISSN 2011-7922

Zusammenfassung

Objective
The aim of the present study was to cross-validate the investigation of Buchanan and Leese (2006) into the prediction of criminal recidivism.

Method
The sample comprised offenders in the criminal justice system of the Canton of Zürich – Switzerland, who were discharged to the community. Participants were followed, and evidence of subsequent charges and convictions for both general and serious recidivism was investigated at fixed periods of 2.5, 6.5, and 10.5 years. The predictive validity of socio-demographic, criminal history, and legal class information was assessed using logistic regression as well as log-likelihood, receiver operating characteristic curve, and contingency analyses.

Results
A multivariable model including age and criminal history information was found to produce the highest rates of predictive validity for general and serious recidivism.

Conclusion
Information regularly accessible in forensic practice may be able to guide clinicians as to the recidivism risk level of their patients.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
150 Psychologie

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690FRIES, Diana, Astrid ROSSEGGER, Jérôme ENDRASS, Jay P. SINGH, 2013. The Prediction of Criminal Recidivism Using Routinely Available File Information. In: International Journal of Psychological Research. 2013, 6(2), pp. 8-14. ISSN 2011-2084. eISSN 2011-7922
BibTex
@article{Fries2013Predi-38034,
  year={2013},
  title={The Prediction of Criminal Recidivism Using Routinely Available File Information},
  url={http://revistas.usb.edu.co/index.php/IJPR/article/view/671},
  number={2},
  volume={6},
  issn={2011-2084},
  journal={International Journal of Psychological Research},
  pages={8--14},
  author={Fries, Diana and Rossegger, Astrid and Endrass, Jérôme and Singh, Jay P.}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/38034">
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-03-17T09:29:17Z</dcterms:available>
    <dc:contributor>Rossegger, Astrid</dc:contributor>
    <dcterms:abstract xml:lang="eng">Objective&lt;br /&gt;&#xD;
The aim of the present study was to cross-validate the investigation of Buchanan and Leese (2006) into the prediction of criminal recidivism.&lt;br /&gt;&lt;br /&gt;&#xD;
Method&lt;br /&gt;&#xD;
The sample comprised offenders in the criminal justice system of the Canton of Zürich – Switzerland, who were discharged to the community. Participants were followed, and evidence of subsequent charges and convictions for both general and serious recidivism was investigated at fixed periods of 2.5, 6.5, and 10.5 years. The predictive validity of socio-demographic, criminal history, and legal class information was assessed using logistic regression as well as log-likelihood, receiver operating characteristic curve, and contingency analyses.&lt;br /&gt;&lt;br /&gt;&#xD;
Results&lt;br /&gt;&#xD;
A multivariable model including age and criminal history information was found to produce the highest rates of predictive validity for general and serious recidivism.&lt;br /&gt;&lt;br /&gt;Conclusion&lt;br /&gt;Information regularly accessible in forensic practice may be able to guide clinicians as to the recidivism risk level of their patients.</dcterms:abstract>
    <dcterms:title>The Prediction of Criminal Recidivism Using Routinely Available File Information</dcterms:title>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Rossegger, Astrid</dc:creator>
    <dc:rights>Attribution-NonCommercial-NoDerivatives 4.0 International</dc:rights>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/38034/3/Fries_0-378400.pdf"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43"/>
    <dc:creator>Endrass, Jérôme</dc:creator>
    <dc:contributor>Fries, Diana</dc:contributor>
    <dc:contributor>Endrass, Jérôme</dc:contributor>
    <dc:language>eng</dc:language>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/38034/3/Fries_0-378400.pdf"/>
    <dc:creator>Singh, Jay P.</dc:creator>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/38034"/>
    <dc:contributor>Singh, Jay P.</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-03-17T09:29:17Z</dc:date>
    <dc:creator>Fries, Diana</dc:creator>
    <dcterms:issued>2013</dcterms:issued>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc-nd/4.0/"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt

Prüfdatum der URL

2017-03-17

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen