Publikation:

An Adaptive Image-based Plagiarism Detection Approach

Lade...
Vorschaubild

Dateien

Meuschke_2-b84g415nl23n7.pdf
Meuschke_2-b84g415nl23n7.pdfGröße: 473.2 KBDownloads: 1042

Datum

2018

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

Proceedings of the 18th ACM/IEEE Joint Conference on Digital Libraries : JCDL '18. New York, USA: ACM Press, 2018, pp. 131-140. ISBN 978-1-4503-5178-2. Available under: doi: 10.1145/3197026.3197042

Zusammenfassung

Identifying plagiarized content is a crucial task for educational and research institutions, funding agencies, and academic publishers. Plagiarism detection systems available for productive use reliably identify copied text, or near-copies of text, but often fail to detect disguised forms of academic plagiarism, such as paraphrases, translations, and idea plagiarism. To improve the detection capabilities for disguised forms of academic plagiarism, we analyze the images in academic documents as text-independent features. We propose an adaptive, scalable, and extensible image-based plagiarism detection approach suitable for analyzing a wide range of image similarities that we observed in academic documents. The proposed detection approach integrates established image analysis methods, such as perceptual hashing, with newly developed similarity assessments for images, such as ratio hashing and position-aware OCR text matching. We evaluate our approach using 15 image pairs that are representative of the spectrum of image similarity we observed in alleged and confirmed cases of academic plagiarism. We embed the test cases in a collection of 4,500 related images from academic texts. Our detection approach achieved a recall of 0.73 and a precision of 1. These results indicate that our image-based approach can complement other content-based feature analysis approaches to retrieve potential source documents for suspiciously similar content from large collections. We provide our code as open source to facilitate future research on image-based plagiarism detection.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Image Analysis, Plagiarism Detection, Academic Publishing

Konferenz

JCDL '18 : 18th ACM/IEEE Joint Conference on Digital Libraries, 3. Juni 2018 - 7. Juni 2018, Fort Worth, Texas, USA
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690MEUSCHKE, Norman, Christopher GONDEK, Daniel SEEBACHER, Corinna BREITINGER, Daniel A. KEIM, Bela GIPP, 2018. An Adaptive Image-based Plagiarism Detection Approach. JCDL '18 : 18th ACM/IEEE Joint Conference on Digital Libraries. Fort Worth, Texas, USA, 3. Juni 2018 - 7. Juni 2018. In: Proceedings of the 18th ACM/IEEE Joint Conference on Digital Libraries : JCDL '18. New York, USA: ACM Press, 2018, pp. 131-140. ISBN 978-1-4503-5178-2. Available under: doi: 10.1145/3197026.3197042
BibTex
@inproceedings{Meuschke2018Adapt-43004,
  year={2018},
  doi={10.1145/3197026.3197042},
  title={An Adaptive Image-based Plagiarism Detection Approach},
  isbn={978-1-4503-5178-2},
  publisher={ACM Press},
  address={New York, USA},
  booktitle={Proceedings of the 18th ACM/IEEE Joint Conference on Digital Libraries : JCDL '18},
  pages={131--140},
  author={Meuschke, Norman and Gondek, Christopher and Seebacher, Daniel and Breitinger, Corinna and Keim, Daniel A. and Gipp, Bela}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43004">
    <dc:rights>terms-of-use</dc:rights>
    <dc:contributor>Keim, Daniel A.</dc:contributor>
    <dc:creator>Keim, Daniel A.</dc:creator>
    <dc:creator>Breitinger, Corinna</dc:creator>
    <dc:contributor>Meuschke, Norman</dc:contributor>
    <dcterms:abstract xml:lang="eng">Identifying plagiarized content is a crucial task for educational and research institutions, funding agencies, and academic publishers. Plagiarism detection systems available for productive use reliably identify copied text, or near-copies of text, but often fail to detect disguised forms of academic plagiarism, such as paraphrases, translations, and idea plagiarism. To improve the detection capabilities for disguised forms of academic plagiarism, we analyze the images in academic documents as text-independent features. We propose an adaptive, scalable, and extensible image-based plagiarism detection approach suitable for analyzing a wide range of image similarities that we observed in academic documents. The proposed detection approach integrates established image analysis methods, such as perceptual hashing, with newly developed similarity assessments for images, such as ratio hashing and position-aware OCR text matching. We evaluate our approach using 15 image pairs that are representative of the spectrum of image similarity we observed in alleged and confirmed cases of academic plagiarism. We embed the test cases in a collection of 4,500 related images from academic texts. Our detection approach achieved a recall of 0.73 and a precision of 1. These results indicate that our image-based approach can complement other content-based feature analysis approaches to retrieve potential source documents for suspiciously similar content from large collections. We provide our code as open source to facilitate future research on image-based plagiarism detection.</dcterms:abstract>
    <dcterms:title>An Adaptive Image-based Plagiarism Detection Approach</dcterms:title>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:creator>Seebacher, Daniel</dc:creator>
    <dc:contributor>Gipp, Bela</dc:contributor>
    <dc:creator>Meuschke, Norman</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-08-07T14:33:52Z</dcterms:available>
    <dcterms:issued>2018</dcterms:issued>
    <dc:contributor>Seebacher, Daniel</dc:contributor>
    <dc:contributor>Breitinger, Corinna</dc:contributor>
    <dc:creator>Gondek, Christopher</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-08-07T14:33:52Z</dc:date>
    <dc:language>eng</dc:language>
    <dc:creator>Gipp, Bela</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/43004/1/Meuschke_2-b84g415nl23n7.pdf"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/43004/1/Meuschke_2-b84g415nl23n7.pdf"/>
    <dc:contributor>Gondek, Christopher</dc:contributor>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/43004"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen