Visualization of streaming data : observing change and context in information visualization techniques
Visualization of streaming data : observing change and context in information visualization techniques
Loading...
Date
2013
Editors
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
URI (citable link)
DOI (citable link)
International patent number
Link to the license
EU project number
Project
Open Access publication
Collections
Title in another language
Publication type
Contribution to a conference collection
Publication status
Published in
2013 IEEE International Conference on Big Data. - IEEE, 2013. - pp. 41-47. - ISBN 978-1-4799-1293-3
Abstract
Visualizing data streams poses numerous challenges in the data, image and user space. In the era of big data, we need incremental visualization methods that will allow the analysts to explore data faster and help them make important decisions on time. In this paper, we have reviewed several well-known information visualization methods that are commonly used to visualize static datasets and analyzed their degrees of freedom. By observing which independent visual variables can change in each method, we described how these changes are related to the attribute and structure changes that can occur in the data stream. Most of the changes in the data stream lead to potential loss of temporal and relational context between the new data and the past data. We present potential directions for measuring the amount of change and loss of context by reviewing related work and identify open issues for future work in this domain.
Summary in another language
Subject (DDC)
004 Computer Science
Keywords
Conference
2013 IEEE International Conference on Big Data, Oct 6, 2013 - Oct 9, 2013, Silicon Valley, CA, USA
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690
KRSTAJIC, Milos, Daniel A. KEIM, 2013. Visualization of streaming data : observing change and context in information visualization techniques. 2013 IEEE International Conference on Big Data. Silicon Valley, CA, USA, Oct 6, 2013 - Oct 9, 2013. In: 2013 IEEE International Conference on Big Data. IEEE, pp. 41-47. ISBN 978-1-4799-1293-3. Available under: doi: 10.1109/BigData.2013.6691713BibTex
@inproceedings{Krstajic2013-10Visua-26222, year={2013}, doi={10.1109/BigData.2013.6691713}, title={Visualization of streaming data : observing change and context in information visualization techniques}, isbn={978-1-4799-1293-3}, publisher={IEEE}, booktitle={2013 IEEE International Conference on Big Data}, pages={41--47}, author={Krstajic, Milos and Keim, Daniel A.} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/26222"> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/26222"/> <dcterms:issued>2013-10</dcterms:issued> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:creator>Keim, Daniel A.</dc:creator> <dc:contributor>Krstajic, Milos</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:contributor>Keim, Daniel A.</dc:contributor> <dc:language>eng</dc:language> <dcterms:title>Visualization of streaming data : observing change and context in information visualization techniques</dcterms:title> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/26222/1/Keim_262227.pdf"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:bibliographicCitation>2013 IEEE International Conference on Big Data : Proceedings ; October 6-9, 2013, Santa Clara, CA, USA / ed. by Xiaohua Hu [...]. - Piscataway ; IEEE, 2013. - S.41-47. - ISBN 978-1-4799-1292-6</dcterms:bibliographicCitation> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/26222/1/Keim_262227.pdf"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-02-05T19:44:32Z</dcterms:available> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-02-05T19:44:32Z</dc:date> <dc:creator>Krstajic, Milos</dc:creator> <dcterms:abstract xml:lang="eng">Visualizing data streams poses numerous challenges in the data, image and user space. In the era of big data, we need incremental visualization methods that will allow the analysts to explore data faster and help them make important decisions on time. In this paper, we have reviewed several well-known information visualization methods that are commonly used to visualize static datasets and analyzed their degrees of freedom. By observing which independent visual variables can change in each method, we described how these changes are related to the attribute and structure changes that can occur in the data stream. Most of the changes in the data stream lead to potential loss of temporal and relational context between the new data and the past data. We present potential directions for measuring the amount of change and loss of context by reviewing related work and identify open issues for future work in this domain.</dcterms:abstract> <dc:rights>terms-of-use</dc:rights> </rdf:Description> </rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Examination date of dissertation
Method of financing
Comment on publication
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
Yes