Publikation:

Visualization of streaming data : observing change and context in information visualization techniques

Lade...
Vorschaubild

Dateien

Keim_262227.pdf
Keim_262227.pdfGröße: 475.07 KBDownloads: 823

Datum

2013

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

2013 IEEE International Conference on Big Data. IEEE, 2013, pp. 41-47. ISBN 978-1-4799-1293-3. Available under: doi: 10.1109/BigData.2013.6691713

Zusammenfassung

Visualizing data streams poses numerous challenges in the data, image and user space. In the era of big data, we need incremental visualization methods that will allow the analysts to explore data faster and help them make important decisions on time. In this paper, we have reviewed several well-known information visualization methods that are commonly used to visualize static datasets and analyzed their degrees of freedom. By observing which independent visual variables can change in each method, we described how these changes are related to the attribute and structure changes that can occur in the data stream. Most of the changes in the data stream lead to potential loss of temporal and relational context between the new data and the past data. We present potential directions for measuring the amount of change and loss of context by reviewing related work and identify open issues for future work in this domain.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

2013 IEEE International Conference on Big Data, 6. Okt. 2013 - 9. Okt. 2013, Silicon Valley, CA, USA
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690KRSTAJIC, Milos, Daniel A. KEIM, 2013. Visualization of streaming data : observing change and context in information visualization techniques. 2013 IEEE International Conference on Big Data. Silicon Valley, CA, USA, 6. Okt. 2013 - 9. Okt. 2013. In: 2013 IEEE International Conference on Big Data. IEEE, 2013, pp. 41-47. ISBN 978-1-4799-1293-3. Available under: doi: 10.1109/BigData.2013.6691713
BibTex
@inproceedings{Krstajic2013-10Visua-26222,
  year={2013},
  doi={10.1109/BigData.2013.6691713},
  title={Visualization of streaming data : observing change and context in information visualization techniques},
  isbn={978-1-4799-1293-3},
  publisher={IEEE},
  booktitle={2013 IEEE International Conference on Big Data},
  pages={41--47},
  author={Krstajic, Milos and Keim, Daniel A.}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/26222">
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/26222"/>
    <dcterms:issued>2013-10</dcterms:issued>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Keim, Daniel A.</dc:creator>
    <dc:contributor>Krstajic, Milos</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:contributor>Keim, Daniel A.</dc:contributor>
    <dc:language>eng</dc:language>
    <dcterms:title>Visualization of streaming data : observing change and context in information visualization techniques</dcterms:title>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/26222/1/Keim_262227.pdf"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:bibliographicCitation>2013 IEEE International Conference on Big Data : Proceedings ; October 6-9, 2013, Santa Clara, CA, USA / ed. by Xiaohua Hu [...]. - Piscataway ; IEEE, 2013. - S.41-47. - ISBN 978-1-4799-1292-6</dcterms:bibliographicCitation>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/26222/1/Keim_262227.pdf"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-02-05T19:44:32Z</dcterms:available>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-02-05T19:44:32Z</dc:date>
    <dc:creator>Krstajic, Milos</dc:creator>
    <dcterms:abstract xml:lang="eng">Visualizing data streams poses numerous challenges in the data, image and user space. In the era of big data, we need incremental visualization methods that will allow the analysts to explore data faster and help them make important decisions on time. In this paper, we have reviewed several well-known information visualization methods that are commonly used to visualize static datasets and analyzed their degrees of freedom. By observing which independent visual variables can change in each method, we described how these changes are related to the attribute and structure changes that can occur in the data stream. Most of the changes in the data stream lead to potential loss of temporal and relational context between the new data and the past data. We present potential directions for measuring the amount of change and loss of context by reviewing related work and identify open issues for future work in this domain.</dcterms:abstract>
    <dc:rights>terms-of-use</dc:rights>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen