Publikation: Visualization of streaming data : observing change and context in information visualization techniques
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Visualizing data streams poses numerous challenges in the data, image and user space. In the era of big data, we need incremental visualization methods that will allow the analysts to explore data faster and help them make important decisions on time. In this paper, we have reviewed several well-known information visualization methods that are commonly used to visualize static datasets and analyzed their degrees of freedom. By observing which independent visual variables can change in each method, we described how these changes are related to the attribute and structure changes that can occur in the data stream. Most of the changes in the data stream lead to potential loss of temporal and relational context between the new data and the past data. We present potential directions for measuring the amount of change and loss of context by reviewing related work and identify open issues for future work in this domain.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
KRSTAJIC, Milos, Daniel A. KEIM, 2013. Visualization of streaming data : observing change and context in information visualization techniques. 2013 IEEE International Conference on Big Data. Silicon Valley, CA, USA, 6. Okt. 2013 - 9. Okt. 2013. In: 2013 IEEE International Conference on Big Data. IEEE, 2013, pp. 41-47. ISBN 978-1-4799-1293-3. Available under: doi: 10.1109/BigData.2013.6691713BibTex
@inproceedings{Krstajic2013-10Visua-26222, year={2013}, doi={10.1109/BigData.2013.6691713}, title={Visualization of streaming data : observing change and context in information visualization techniques}, isbn={978-1-4799-1293-3}, publisher={IEEE}, booktitle={2013 IEEE International Conference on Big Data}, pages={41--47}, author={Krstajic, Milos and Keim, Daniel A.} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/26222"> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/26222"/> <dcterms:issued>2013-10</dcterms:issued> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:creator>Keim, Daniel A.</dc:creator> <dc:contributor>Krstajic, Milos</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:contributor>Keim, Daniel A.</dc:contributor> <dc:language>eng</dc:language> <dcterms:title>Visualization of streaming data : observing change and context in information visualization techniques</dcterms:title> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/26222/1/Keim_262227.pdf"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:bibliographicCitation>2013 IEEE International Conference on Big Data : Proceedings ; October 6-9, 2013, Santa Clara, CA, USA / ed. by Xiaohua Hu [...]. - Piscataway ; IEEE, 2013. - S.41-47. - ISBN 978-1-4799-1292-6</dcterms:bibliographicCitation> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/26222/1/Keim_262227.pdf"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-02-05T19:44:32Z</dcterms:available> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-02-05T19:44:32Z</dc:date> <dc:creator>Krstajic, Milos</dc:creator> <dcterms:abstract xml:lang="eng">Visualizing data streams poses numerous challenges in the data, image and user space. In the era of big data, we need incremental visualization methods that will allow the analysts to explore data faster and help them make important decisions on time. In this paper, we have reviewed several well-known information visualization methods that are commonly used to visualize static datasets and analyzed their degrees of freedom. By observing which independent visual variables can change in each method, we described how these changes are related to the attribute and structure changes that can occur in the data stream. Most of the changes in the data stream lead to potential loss of temporal and relational context between the new data and the past data. We present potential directions for measuring the amount of change and loss of context by reviewing related work and identify open issues for future work in this domain.</dcterms:abstract> <dc:rights>terms-of-use</dc:rights> </rdf:Description> </rdf:RDF>