Publikation: Quillen property for real algebraic varieties
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Let I be a conjugation-invariant ideal in the complex polynomial ring with variables z_1,...,z_n and their conjugates. The ideal I has the Quillen property if every real valued, strictly positive polynomial on the real zero set of I in C^n is a sum of hermitian squares modulo I. We first relate the Quillen property to the archimedean property from real algebra. Using hereditary calculus, we then quantize and show that the Quillen property implies the subnormality of commuting tuples of Hilbert space operators satisfying the identities in I. In the finite rank case we give a complete geometric characterization of when the identities in I imply normality for a commuting tuple of matrices. This geometric interpretation provides simple means to refute Quillen's property of an ideal. We also generalize these notions and results from real algebraic sets to semi-algebraic sets in C^n.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
PUTINAR, Mihai, Claus SCHEIDERER, 2013. Quillen property for real algebraic varietiesBibTex
@unpublished{Putinar2013Quill-26407, year={2013}, title={Quillen property for real algebraic varieties}, author={Putinar, Mihai and Scheiderer, Claus} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/26407"> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Putinar, Mihai</dc:contributor> <dc:contributor>Scheiderer, Claus</dc:contributor> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/26407"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dcterms:title>Quillen property for real algebraic varieties</dcterms:title> <dc:language>eng</dc:language> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:creator>Scheiderer, Claus</dc:creator> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-02-24T10:28:26Z</dcterms:available> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:abstract xml:lang="eng">Let I be a conjugation-invariant ideal in the complex polynomial ring with variables z_1,...,z_n and their conjugates. The ideal I has the Quillen property if every real valued, strictly positive polynomial on the real zero set of I in C^n is a sum of hermitian squares modulo I. We first relate the Quillen property to the archimedean property from real algebra. Using hereditary calculus, we then quantize and show that the Quillen property implies the subnormality of commuting tuples of Hilbert space operators satisfying the identities in I. In the finite rank case we give a complete geometric characterization of when the identities in I imply normality for a commuting tuple of matrices. This geometric interpretation provides simple means to refute Quillen's property of an ideal. We also generalize these notions and results from real algebraic sets to semi-algebraic sets in C^n.</dcterms:abstract> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-02-24T10:28:26Z</dc:date> <dc:rights>terms-of-use</dc:rights> <dc:creator>Putinar, Mihai</dc:creator> <dcterms:issued>2013</dcterms:issued> </rdf:Description> </rdf:RDF>