Quillen property for real algebraic varieties
Quillen property for real algebraic varieties
No Thumbnail Available
Files
There are no files associated with this item.
Date
2013
Authors
Putinar, Mihai
Editors
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
URI (citable link)
ArXiv-ID
International patent number
Link to the license
EU project number
Project
Open Access publication
Collections
Title in another language
Publication type
Preprint
Publication status
Published in
Abstract
Let I be a conjugation-invariant ideal in the complex polynomial ring with variables z_1,...,z_n and their conjugates. The ideal I has the Quillen property if every real valued, strictly positive polynomial on the real zero set of I in C^n is a sum of hermitian squares modulo I. We first relate the Quillen property to the archimedean property from real algebra. Using hereditary calculus, we then quantize and show that the Quillen property implies the subnormality of commuting tuples of Hilbert space operators satisfying the identities in I. In the finite rank case we give a complete geometric characterization of when the identities in I imply normality for a commuting tuple of matrices. This geometric interpretation provides simple means to refute Quillen's property of an ideal. We also generalize these notions and results from real algebraic sets to semi-algebraic sets in C^n.
Summary in another language
Subject (DDC)
510 Mathematics
Keywords
Conference
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690
PUTINAR, Mihai, Claus SCHEIDERER, 2013. Quillen property for real algebraic varietiesBibTex
@unpublished{Putinar2013Quill-26407, year={2013}, title={Quillen property for real algebraic varieties}, author={Putinar, Mihai and Scheiderer, Claus} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/26407"> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Putinar, Mihai</dc:contributor> <dc:contributor>Scheiderer, Claus</dc:contributor> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/26407"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dcterms:title>Quillen property for real algebraic varieties</dcterms:title> <dc:language>eng</dc:language> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:creator>Scheiderer, Claus</dc:creator> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-02-24T10:28:26Z</dcterms:available> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:abstract xml:lang="eng">Let I be a conjugation-invariant ideal in the complex polynomial ring with variables z_1,...,z_n and their conjugates. The ideal I has the Quillen property if every real valued, strictly positive polynomial on the real zero set of I in C^n is a sum of hermitian squares modulo I. We first relate the Quillen property to the archimedean property from real algebra. Using hereditary calculus, we then quantize and show that the Quillen property implies the subnormality of commuting tuples of Hilbert space operators satisfying the identities in I. In the finite rank case we give a complete geometric characterization of when the identities in I imply normality for a commuting tuple of matrices. This geometric interpretation provides simple means to refute Quillen's property of an ideal. We also generalize these notions and results from real algebraic sets to semi-algebraic sets in C^n.</dcterms:abstract> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-02-24T10:28:26Z</dc:date> <dc:rights>terms-of-use</dc:rights> <dc:creator>Putinar, Mihai</dc:creator> <dcterms:issued>2013</dcterms:issued> </rdf:Description> </rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Examination date of dissertation
Method of financing
Comment on publication
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
Yes