Publikation:

Active coevolutionary learning of requirements specifications from examples

Lade...
Vorschaubild

Dateien

Wever_2-bc1t5a3wqeg93.pdf
Wever_2-bc1t5a3wqeg93.pdfGröße: 612.23 KBDownloads: 5

Datum

2017

Autor:innen

Wever, Marcel
van Rooijen, Lorijn

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

BOSMAN, Peter A. N., ed.. GECCO '17 : Proceedings of the Genetic and Evolutionary Computation Conference. New York, NY: ACM, 2017, pp. 1327-1334. ISBN 978-1-4503-4920-8. Available under: doi: 10.1145/3071178.3071258

Zusammenfassung

Within software engineering, requirements engineering starts from imprecise and vague user requirements descriptions and infers precise, formalized specifications. Techniques, such as interviewing by requirements engineers, are typically applied to identify the user's needs. We want to partially automate even this first step of requirements elicitation by methods of evolutionary computation. The idea is to enable users to specify their desired software by listing examples of behavioral descriptions. Users initially specify two lists of operation sequences, one with desired behaviors and one with forbidden behaviors. Then, we search for the appropriate formal software specification in the form of a deterministic finite automaton. We solve this problem known as grammatical inference with an active coevolutionary approach following Bongard and Lipson [2]. The coevolutionary process alternates between two phases: (A) additional training data is actively proposed by an evolutionary process and the user is interactively asked to label it; (B) appropriate automata are then evolved to solve this extended grammatical inference problem. Our approach leverages multi-objective evolution in both phases and outperforms the state-of-the-art technique [2] for input alphabet sizes of three and more, which are relevant to our problem domain of requirements specification.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

GECCO '17 : Genetic and Evolutionary Computation Conference, 15. Juli 2017 - 19. Juli 2017, Berlin, Germany
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Verknüpfte Datensätze

Zitieren

ISO 690WEVER, Marcel, Lorijn VAN ROOIJEN, Heiko HAMANN, 2017. Active coevolutionary learning of requirements specifications from examples. GECCO '17 : Genetic and Evolutionary Computation Conference. Berlin, Germany, 15. Juli 2017 - 19. Juli 2017. In: BOSMAN, Peter A. N., ed.. GECCO '17 : Proceedings of the Genetic and Evolutionary Computation Conference. New York, NY: ACM, 2017, pp. 1327-1334. ISBN 978-1-4503-4920-8. Available under: doi: 10.1145/3071178.3071258
BibTex
@inproceedings{Wever2017Activ-59869,
  year={2017},
  doi={10.1145/3071178.3071258},
  title={Active coevolutionary learning of requirements specifications from examples},
  isbn={978-1-4503-4920-8},
  publisher={ACM},
  address={New York, NY},
  booktitle={GECCO '17 : Proceedings of the Genetic and Evolutionary Computation Conference},
  pages={1327--1334},
  editor={Bosman, Peter A. N.},
  author={Wever, Marcel and van Rooijen, Lorijn and Hamann, Heiko}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/59869">
    <dc:contributor>van Rooijen, Lorijn</dc:contributor>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/59869/1/Wever_2-bc1t5a3wqeg93.pdf"/>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:contributor>Hamann, Heiko</dc:contributor>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/59869"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-01-20T13:49:12Z</dcterms:available>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/59869/1/Wever_2-bc1t5a3wqeg93.pdf"/>
    <dc:contributor>Wever, Marcel</dc:contributor>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:issued>2017</dcterms:issued>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-01-20T13:49:12Z</dc:date>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:abstract xml:lang="eng">Within software engineering, requirements engineering starts from imprecise and vague user requirements descriptions and infers precise, formalized specifications. Techniques, such as interviewing by requirements engineers, are typically applied to identify the user's needs. We want to partially automate even this first step of requirements elicitation by methods of evolutionary computation. The idea is to enable users to specify their desired software by listing examples of behavioral descriptions. Users initially specify two lists of operation sequences, one with desired behaviors and one with forbidden behaviors. Then, we search for the appropriate formal software specification in the form of a deterministic finite automaton. We solve this problem known as grammatical inference with an active coevolutionary approach following Bongard and Lipson [2]. The coevolutionary process alternates between two phases: (A) additional training data is actively proposed by an evolutionary process and the user is interactively asked to label it; (B) appropriate automata are then evolved to solve this extended grammatical inference problem. Our approach leverages multi-objective evolution in both phases and outperforms the state-of-the-art technique [2] for input alphabet sizes of three and more, which are relevant to our problem domain of requirements specification.</dcterms:abstract>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>van Rooijen, Lorijn</dc:creator>
    <dc:creator>Wever, Marcel</dc:creator>
    <dc:creator>Hamann, Heiko</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:language>eng</dc:language>
    <dcterms:title>Active coevolutionary learning of requirements specifications from examples</dcterms:title>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Diese Publikation teilen