Active coevolutionary learning of requirements specifications from examples

Lade...
Vorschaubild
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2017
Autor:innen
Wever, Marcel
van Rooijen, Lorijn
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published
Erschienen in
BOSMAN, Peter A. N., ed.. GECCO '17 : Proceedings of the Genetic and Evolutionary Computation Conference. New York, NY: ACM, 2017, pp. 1327-1334. ISBN 978-1-4503-4920-8. Available under: doi: 10.1145/3071178.3071258
Zusammenfassung

Within software engineering, requirements engineering starts from imprecise and vague user requirements descriptions and infers precise, formalized specifications. Techniques, such as interviewing by requirements engineers, are typically applied to identify the user's needs. We want to partially automate even this first step of requirements elicitation by methods of evolutionary computation. The idea is to enable users to specify their desired software by listing examples of behavioral descriptions. Users initially specify two lists of operation sequences, one with desired behaviors and one with forbidden behaviors. Then, we search for the appropriate formal software specification in the form of a deterministic finite automaton. We solve this problem known as grammatical inference with an active coevolutionary approach following Bongard and Lipson [2]. The coevolutionary process alternates between two phases: (A) additional training data is actively proposed by an evolutionary process and the user is interactively asked to label it; (B) appropriate automata are then evolved to solve this extended grammatical inference problem. Our approach leverages multi-objective evolution in both phases and outperforms the state-of-the-art technique [2] for input alphabet sizes of three and more, which are relevant to our problem domain of requirements specification.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
004 Informatik
Schlagwörter
Konferenz
GECCO '17 : Genetic and Evolutionary Computation Conference, 15. Juli 2017 - 19. Juli 2017, Berlin, Germany
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690WEVER, Marcel, Lorijn VAN ROOIJEN, Heiko HAMANN, 2017. Active coevolutionary learning of requirements specifications from examples. GECCO '17 : Genetic and Evolutionary Computation Conference. Berlin, Germany, 15. Juli 2017 - 19. Juli 2017. In: BOSMAN, Peter A. N., ed.. GECCO '17 : Proceedings of the Genetic and Evolutionary Computation Conference. New York, NY: ACM, 2017, pp. 1327-1334. ISBN 978-1-4503-4920-8. Available under: doi: 10.1145/3071178.3071258
BibTex
@inproceedings{Wever2017Activ-59869,
  year={2017},
  doi={10.1145/3071178.3071258},
  title={Active coevolutionary learning of requirements specifications from examples},
  isbn={978-1-4503-4920-8},
  publisher={ACM},
  address={New York, NY},
  booktitle={GECCO '17 : Proceedings of the Genetic and Evolutionary Computation Conference},
  pages={1327--1334},
  editor={Bosman, Peter A. N.},
  author={Wever, Marcel and van Rooijen, Lorijn and Hamann, Heiko}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/59869">
    <dc:contributor>van Rooijen, Lorijn</dc:contributor>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:contributor>Hamann, Heiko</dc:contributor>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/59869"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-01-20T13:49:12Z</dcterms:available>
    <dc:contributor>Wever, Marcel</dc:contributor>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:issued>2017</dcterms:issued>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-01-20T13:49:12Z</dc:date>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:abstract xml:lang="eng">Within software engineering, requirements engineering starts from imprecise and vague user requirements descriptions and infers precise, formalized specifications. Techniques, such as interviewing by requirements engineers, are typically applied to identify the user's needs. We want to partially automate even this first step of requirements elicitation by methods of evolutionary computation. The idea is to enable users to specify their desired software by listing examples of behavioral descriptions. Users initially specify two lists of operation sequences, one with desired behaviors and one with forbidden behaviors. Then, we search for the appropriate formal software specification in the form of a deterministic finite automaton. We solve this problem known as grammatical inference with an active coevolutionary approach following Bongard and Lipson [2]. The coevolutionary process alternates between two phases: (A) additional training data is actively proposed by an evolutionary process and the user is interactively asked to label it; (B) appropriate automata are then evolved to solve this extended grammatical inference problem. Our approach leverages multi-objective evolution in both phases and outperforms the state-of-the-art technique [2] for input alphabet sizes of three and more, which are relevant to our problem domain of requirements specification.</dcterms:abstract>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>van Rooijen, Lorijn</dc:creator>
    <dc:creator>Wever, Marcel</dc:creator>
    <dc:creator>Hamann, Heiko</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:language>eng</dc:language>
    <dcterms:title>Active coevolutionary learning of requirements specifications from examples</dcterms:title>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Diese Publikation teilen