Efficient Geometry-based Similarity Search of 3D Spatial Databases

Loading...
Thumbnail Image
Date
1999
Editors
Contact
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
DOI (citable link)
ArXiv-ID
International patent number
EU project number
Project
Open Access publication
Restricted until
Title in another language
Research Projects
Organizational Units
Journal Issue
Publication type
Journal article
Publication status
Published in
SIGMOD Record ; 28 (1999), 2. - pp. 419-430
Abstract
Searching a database of 3D-volume objects for objects which are similar to a given 3D search object is an important problem which arises in number of database applications - for example, in Medicine and CAD. In this paper, we present a new geometry-based solution to the problem of searching for similar 3D-volume objects. The problem is motivated from a real application in the medical domain where volume similarity is used as a basis for surgery decisions. Our solution for an efficient similarity search on large databases of 3D volume objects is based on a new geometric index structure. The basic idea of our new approach is to use the concept of hierarchical approximations of the 3D objects to speed up the search process. We formally show the correctness of our new approach and introduce two instantiations of our general idea, which are based on cuboid and octree approximations. We finally provide a performance evaluation of our new index structure revealing significant performance improvements over existing approaches.
Summary in another language
Subject (DDC)
004 Computer Science
Keywords
Conference
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690KEIM, Daniel A., 1999. Efficient Geometry-based Similarity Search of 3D Spatial Databases. In: SIGMOD Record. 28(2), pp. 419-430. Available under: doi: 10.1145/304181.304219
BibTex
@article{Keim1999Effic-5707,
  year={1999},
  doi={10.1145/304181.304219},
  title={Efficient Geometry-based Similarity Search of 3D Spatial Databases},
  number={2},
  volume={28},
  journal={SIGMOD Record},
  pages={419--430},
  author={Keim, Daniel A.}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/5707">
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc-nd/2.0/"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5707/1/Efficient_Geometry_based_Similarity_Search_of_3D_Spatial_Databases.pdf"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:rights>Attribution-NonCommercial-NoDerivs 2.0 Generic</dc:rights>
    <dc:language>eng</dc:language>
    <dcterms:title>Efficient Geometry-based Similarity Search of 3D Spatial Databases</dcterms:title>
    <dcterms:bibliographicCitation>First publ. in: SIGMOD Record 28 (1999), 2, pp. 419-430</dcterms:bibliographicCitation>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/5707"/>
    <dc:creator>Keim, Daniel A.</dc:creator>
    <dc:format>application/pdf</dc:format>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:abstract xml:lang="eng">Searching a database of 3D-volume objects for objects which are similar to a given 3D search object is an important problem which arises in number of database applications - for example, in Medicine and CAD. In this paper, we present a new geometry-based solution to the problem of searching for similar 3D-volume objects. The problem is motivated from a real application in the medical domain where volume similarity is used as a basis for surgery decisions. Our solution for an efficient similarity search on large databases of 3D volume objects is based on a new geometric index structure. The basic idea of our new approach is to use the concept of hierarchical approximations of the 3D objects to speed up the search process. We formally show the correctness of our new approach and introduce two instantiations of our general idea, which are based on cuboid and octree approximations. We finally provide a performance evaluation of our new index structure revealing significant performance improvements over existing approaches.</dcterms:abstract>
    <dcterms:issued>1999</dcterms:issued>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T15:59:30Z</dcterms:available>
    <dc:contributor>Keim, Daniel A.</dc:contributor>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5707/1/Efficient_Geometry_based_Similarity_Search_of_3D_Spatial_Databases.pdf"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T15:59:30Z</dc:date>
  </rdf:Description>
</rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Contact
URL of original publication
Test date of URL
Examination date of dissertation
Method of financing
Comment on publication
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
No
Refereed