Well-posedness of a quasilinear hyperbolic fluid model

Loading...
Thumbnail Image
Date
2010
Editors
Contact
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
Konstanzer Schriften in Mathematik; 267
DOI (citable link)
ArXiv-ID
International patent number
Link to the license
EU project number
Project
Open Access publication
Restricted until
Title in another language
Research Projects
Organizational Units
Journal Issue
Publication type
Working Paper/Technical Report
Publication status
Published in
Abstract
We replace a Fourier type law by a Cattaneo type law in the derivation of the fundamental equations of fluid mechanics. This leads to hyperbolicly perturbed quasilinear Navier-Stokes equations.For this problem the standard approach by means of quasilinear symmetric hyperbolic systems seems to fail by the fact that finite propagation speed might not be expected. Therefore a somewhat different approach via viscosity solutions is developed in order to prove higher regularity energy estimates for the linearized system. Surprisingly, this method yields stronger results than previous methods, by the fact that we can relax the regularity assumptions on the coefficients to a minimum. This leads to a short and elegant proof of a local-in-time existence result for the corresponding first order quasilinear system, hence also for the original hyperbolicly perturbed Navier-Stokes equations.
Summary in another language
Subject (DDC)
510 Mathematics
Keywords
Conference
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690RACKE, Reinhard, Jürgen SAAL, 2010. Well-posedness of a quasilinear hyperbolic fluid model
BibTex
@techreport{Racke2010Wellp-699,
  year={2010},
  series={Konstanzer Schriften in Mathematik},
  title={Well-posedness of a quasilinear hyperbolic fluid model},
  number={267},
  author={Racke, Reinhard and Saal, Jürgen}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/699">
    <dcterms:abstract xml:lang="eng">We replace a Fourier type law by a Cattaneo type law in the derivation of the fundamental equations of fluid mechanics. This leads to hyperbolicly perturbed quasilinear Navier-Stokes equations.For this problem the standard approach by means of quasilinear symmetric hyperbolic systems seems to fail by the fact that finite propagation speed might not be expected. Therefore a somewhat different approach via viscosity solutions is developed in order to prove higher regularity energy estimates for the linearized system. Surprisingly, this method yields stronger results than previous methods, by the fact that we can relax the regularity assumptions on the coefficients to a minimum. This leads to a short and elegant proof of a local-in-time existence result for the corresponding first order quasilinear system, hence also for the original hyperbolicly perturbed Navier-Stokes equations.</dcterms:abstract>
    <dc:format>application/pdf</dc:format>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/699"/>
    <dc:contributor>Racke, Reinhard</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-22T17:45:33Z</dcterms:available>
    <dc:language>eng</dc:language>
    <dcterms:title>Well-posedness of a quasilinear hyperbolic fluid model</dcterms:title>
    <dc:creator>Saal, Jürgen</dc:creator>
    <dc:creator>Racke, Reinhard</dc:creator>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/699/1/hypnsloc.pdf"/>
    <dcterms:issued>2010</dcterms:issued>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-22T17:45:33Z</dc:date>
    <dc:contributor>Saal, Jürgen</dc:contributor>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/699/1/hypnsloc.pdf"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
  </rdf:Description>
</rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Contact
URL of original publication
Test date of URL
Examination date of dissertation
Method of financing
Comment on publication
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
Yes
Refereed