Microcystin congener-specific in vitro neurotoxicity

No Thumbnail Available
Files
There are no files associated with this item.
Date
2008
Editors
Contact
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
URI (citable link)
ArXiv-ID
International patent number
Link to the license
oops
EU project number
Project
Open Access publication
Collections
Restricted until
Title in another language
Research Projects
Organizational Units
Journal Issue
Publication type
Journal article
Publication status
Published
Published in
Toxicology Letters ; 180 (2008). - pp. S103. - Elsevier. - ISSN 0378-4274. - eISSN 1879-3169
Abstract
Contamination of natural waters by cyanobacterial blooms is a worldwide problem, resulting in serious water pollution and health hazards for humans and livestock. The cyanobacterial micro- cystins (MCs) represent a group of >80 cyclic heptapeptide toxin congeners, known to induce hepato-, nephro-, and potentially neu- rotoxic effects via protein phosphatase (PP)-inhibition. Present evidence suggests that organic anion transporting polypeptides (rodent Oatps/human OATPs) are required for active uptake of MCs into hepatocytes and kidney epithelial cells. Based on the presence of Oatps/OATPs at the blood–brain-barrier (BBB) and blood–cerebrospinal fluid-barrier (BCFB) it was hypothesized that MCs can be transported across the BBB/BCFB and into neurons in an Oatp/OATP-dependent manner and will induce neurotoxic effects. To test this hypothesis, primary murine neurons (Cere- bellar Granule Cells, mCGC) were analyzed for the presence of mCGC Oatps (mRNA level). Subsequently, the uptake, localization and neurotoxic effects of MC-LR, -LW, and -LF were investigated using MC-immunoblotting, confocal microscopy of immunostained neurons, PP-inhibition assay, TNF- ELISA and caspase 3/7 activ- ity assay. RT-PCR demonstrated the presence of six murine Oatps (Oatp1c1, 1a5, 3a1, 1a1, 1b2 and 6d1) in mCGC. MC-LR-specific immunodetection demonstrated a concentration-dependent accu- mulation of this congener and covalent binding to PP-1 and -2A. mCGC PP activity was reduced by 20% following 48 h exposure to ≥300 nM MC-LR, -LW and -LF concurrent with a congener and concentration-dependent up regulation of TNF- expression and caspase 3/7 activity. In conclusion, the data suggest an MC congener-dependent uptake and neurotoxicity in primary mouse CGC.
Summary in another language
Subject (DDC)
570 Biosciences, Biology
Keywords
Conference
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690FEURSTEIN, Daniel, Andreas FISCHER, Daniel R. DIETRICH, 2008. Microcystin congener-specific in vitro neurotoxicity. In: Toxicology Letters. Elsevier. 180, pp. S103. ISSN 0378-4274. eISSN 1879-3169. Available under: doi: 10.1016/j.toxlet.2008.06.419
BibTex
@article{Feurstein2008Micro-58585,
  year={2008},
  doi={10.1016/j.toxlet.2008.06.419},
  title={Microcystin congener-specific in vitro neurotoxicity},
  volume={180},
  issn={0378-4274},
  journal={Toxicology Letters},
  author={Feurstein, Daniel and Fischer, Andreas and Dietrich, Daniel R.}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/58585">
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-09-09T10:38:24Z</dcterms:available>
    <dc:creator>Fischer, Andreas</dc:creator>
    <dc:contributor>Dietrich, Daniel R.</dc:contributor>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:issued>2008</dcterms:issued>
    <dcterms:title>Microcystin congener-specific in vitro neurotoxicity</dcterms:title>
    <dc:creator>Feurstein, Daniel</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dc:language>eng</dc:language>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-09-09T10:38:24Z</dc:date>
    <dc:contributor>Feurstein, Daniel</dc:contributor>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/58585"/>
    <dc:contributor>Fischer, Andreas</dc:contributor>
    <dc:creator>Dietrich, Daniel R.</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dcterms:abstract xml:lang="eng">Contamination of natural waters by cyanobacterial blooms is a worldwide problem, resulting in serious water pollution and health hazards for humans and livestock. The cyanobacterial micro- cystins (MCs) represent a group of &gt;80 cyclic heptapeptide toxin congeners, known to induce hepato-, nephro-, and potentially neu- rotoxic effects via protein phosphatase (PP)-inhibition. Present evidence suggests that organic anion transporting polypeptides (rodent Oatps/human OATPs) are required for active uptake of MCs into hepatocytes and kidney epithelial cells. Based on the presence of Oatps/OATPs at the blood–brain-barrier (BBB) and blood–cerebrospinal fluid-barrier (BCFB) it was hypothesized that MCs can be transported across the BBB/BCFB and into neurons in an Oatp/OATP-dependent manner and will induce neurotoxic effects. To test this hypothesis, primary murine neurons (Cere- bellar Granule Cells, mCGC) were analyzed for the presence of mCGC Oatps (mRNA level). Subsequently, the uptake, localization and neurotoxic effects of MC-LR, -LW, and -LF were investigated using MC-immunoblotting, confocal microscopy of immunostained neurons, PP-inhibition assay, TNF-  ELISA and caspase 3/7 activ- ity assay. RT-PCR demonstrated the presence of six murine Oatps (Oatp1c1, 1a5, 3a1, 1a1, 1b2 and 6d1) in mCGC. MC-LR-specific immunodetection demonstrated a concentration-dependent accu- mulation of this congener and covalent binding to PP-1 and -2A. mCGC PP activity was reduced by 20% following 48 h exposure to ≥300 nM MC-LR, -LW and -LF concurrent with a congener and concentration-dependent up regulation of TNF-  expression and caspase 3/7 activity. In conclusion, the data suggest an MC congener-dependent uptake and neurotoxicity in primary mouse CGC.</dcterms:abstract>
  </rdf:Description>
</rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Contact
URL of original publication
Test date of URL
Examination date of dissertation
Method of financing
Comment on publication
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
Yes
Refereed
Yes