Publikation:

Evaluating Reordering Strategies for Cluster Identification in Parallel Coordinates

Lade...
Vorschaubild

Dateien

Blumenschein_2-bo7iuj4xdnbt4.pdf
Blumenschein_2-bo7iuj4xdnbt4.pdfGröße: 10.6 MBDownloads: 224

Datum

2020

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Link zur Lizenz

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Hybrid
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Computer Graphics Forum. Wiley. 2020, 39(3), pp. 537-549. ISSN 0167-7055. eISSN 1467-8659. Available under: doi: 10.1111/cgf.14000

Zusammenfassung

The ability to perceive patterns in parallel coordinates plots (PCPs) is heavily influenced by the ordering of the dimensions. While the community has proposed over 30 automatic ordering strategies, we still lack empirical guidance for choosing an appropriate strategy for a given task. In this paper, we first propose a classification of tasks and patterns and analyze which PCP reordering strategies help in detecting them. Based on our classification, we then conduct an empirical user study with 31 participants to evaluate reordering strategies for cluster identification tasks. We particularly measure time, identification quality, and the users’ confidence for two different strategies using both synthetic and real‐world datasets. Our results show that, somewhat unexpectedly, participants tend to focus on dissimilar rather than similar dimension pairs when detecting clusters, and are more confident in their answers. This is especially true when increasing the amount of clutter in the data. As a result of these findings, we propose a new reordering strategy based on the dissimilarity of neighboring dimension pairs.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690BLUMENSCHEIN, Michael, Xuan ZHANG, David POMERENKE, Daniel A. KEIM, Johannes FUCHS, 2020. Evaluating Reordering Strategies for Cluster Identification in Parallel Coordinates. In: Computer Graphics Forum. Wiley. 2020, 39(3), pp. 537-549. ISSN 0167-7055. eISSN 1467-8659. Available under: doi: 10.1111/cgf.14000
BibTex
@article{Blumenschein2020-07-18Evalu-50522,
  year={2020},
  doi={10.1111/cgf.14000},
  title={Evaluating Reordering Strategies for Cluster Identification in Parallel Coordinates},
  number={3},
  volume={39},
  issn={0167-7055},
  journal={Computer Graphics Forum},
  pages={537--549},
  author={Blumenschein, Michael and Zhang, Xuan and Pomerenke, David and Keim, Daniel A. and Fuchs, Johannes}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/50522">
    <dc:contributor>Blumenschein, Michael</dc:contributor>
    <dc:contributor>Fuchs, Johannes</dc:contributor>
    <dc:rights>Attribution-NonCommercial 4.0 International</dc:rights>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/50522/1/Blumenschein_2-bo7iuj4xdnbt4.pdf"/>
    <dc:language>eng</dc:language>
    <dcterms:title>Evaluating Reordering Strategies for Cluster Identification in Parallel Coordinates</dcterms:title>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-08-18T14:46:32Z</dc:date>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/50522/1/Blumenschein_2-bo7iuj4xdnbt4.pdf"/>
    <dc:creator>Pomerenke, David</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Blumenschein, Michael</dc:creator>
    <dc:contributor>Pomerenke, David</dc:contributor>
    <dc:contributor>Keim, Daniel A.</dc:contributor>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc/4.0/"/>
    <dcterms:abstract xml:lang="eng">The ability to perceive patterns in parallel coordinates plots (PCPs) is heavily influenced by the ordering of the dimensions. While the community has proposed over 30 automatic ordering strategies, we still lack empirical guidance for choosing an appropriate strategy for a given task. In this paper, we first propose a classification of tasks and patterns and analyze which PCP reordering strategies help in detecting them. Based on our classification, we then conduct an empirical user study with 31 participants to evaluate reordering strategies for cluster identification tasks. We particularly measure time, identification quality, and the users’ confidence for two different strategies using both synthetic and real‐world datasets. Our results show that, somewhat unexpectedly, participants tend to focus on dissimilar rather than similar dimension pairs when detecting clusters, and are more confident in their answers. This is especially true when increasing the amount of clutter in the data. As a result of these findings, we propose a new reordering strategy based on the dissimilarity of neighboring dimension pairs.</dcterms:abstract>
    <dc:creator>Keim, Daniel A.</dc:creator>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/50522"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-08-18T14:46:32Z</dcterms:available>
    <dc:creator>Fuchs, Johannes</dc:creator>
    <dc:contributor>Zhang, Xuan</dc:contributor>
    <dcterms:issued>2020-07-18</dcterms:issued>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Zhang, Xuan</dc:creator>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen