Publikation: Evaluating Reordering Strategies for Cluster Identification in Parallel Coordinates
Dateien
Datum
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
The ability to perceive patterns in parallel coordinates plots (PCPs) is heavily influenced by the ordering of the dimensions. While the community has proposed over 30 automatic ordering strategies, we still lack empirical guidance for choosing an appropriate strategy for a given task. In this paper, we first propose a classification of tasks and patterns and analyze which PCP reordering strategies help in detecting them. Based on our classification, we then conduct an empirical user study with 31 participants to evaluate reordering strategies for cluster identification tasks. We particularly measure time, identification quality, and the users’ confidence for two different strategies using both synthetic and real‐world datasets. Our results show that, somewhat unexpectedly, participants tend to focus on dissimilar rather than similar dimension pairs when detecting clusters, and are more confident in their answers. This is especially true when increasing the amount of clutter in the data. As a result of these findings, we propose a new reordering strategy based on the dissimilarity of neighboring dimension pairs.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
BLUMENSCHEIN, Michael, Xuan ZHANG, David POMERENKE, Daniel A. KEIM, Johannes FUCHS, 2020. Evaluating Reordering Strategies for Cluster Identification in Parallel Coordinates. In: Computer Graphics Forum. Wiley. 2020, 39(3), pp. 537-549. ISSN 0167-7055. eISSN 1467-8659. Available under: doi: 10.1111/cgf.14000BibTex
@article{Blumenschein2020-07-18Evalu-50522, year={2020}, doi={10.1111/cgf.14000}, title={Evaluating Reordering Strategies for Cluster Identification in Parallel Coordinates}, number={3}, volume={39}, issn={0167-7055}, journal={Computer Graphics Forum}, pages={537--549}, author={Blumenschein, Michael and Zhang, Xuan and Pomerenke, David and Keim, Daniel A. and Fuchs, Johannes} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/50522"> <dc:contributor>Blumenschein, Michael</dc:contributor> <dc:contributor>Fuchs, Johannes</dc:contributor> <dc:rights>Attribution-NonCommercial 4.0 International</dc:rights> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/50522/1/Blumenschein_2-bo7iuj4xdnbt4.pdf"/> <dc:language>eng</dc:language> <dcterms:title>Evaluating Reordering Strategies for Cluster Identification in Parallel Coordinates</dcterms:title> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-08-18T14:46:32Z</dc:date> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/50522/1/Blumenschein_2-bo7iuj4xdnbt4.pdf"/> <dc:creator>Pomerenke, David</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:creator>Blumenschein, Michael</dc:creator> <dc:contributor>Pomerenke, David</dc:contributor> <dc:contributor>Keim, Daniel A.</dc:contributor> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc/4.0/"/> <dcterms:abstract xml:lang="eng">The ability to perceive patterns in parallel coordinates plots (PCPs) is heavily influenced by the ordering of the dimensions. While the community has proposed over 30 automatic ordering strategies, we still lack empirical guidance for choosing an appropriate strategy for a given task. In this paper, we first propose a classification of tasks and patterns and analyze which PCP reordering strategies help in detecting them. Based on our classification, we then conduct an empirical user study with 31 participants to evaluate reordering strategies for cluster identification tasks. We particularly measure time, identification quality, and the users’ confidence for two different strategies using both synthetic and real‐world datasets. Our results show that, somewhat unexpectedly, participants tend to focus on dissimilar rather than similar dimension pairs when detecting clusters, and are more confident in their answers. This is especially true when increasing the amount of clutter in the data. As a result of these findings, we propose a new reordering strategy based on the dissimilarity of neighboring dimension pairs.</dcterms:abstract> <dc:creator>Keim, Daniel A.</dc:creator> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/50522"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-08-18T14:46:32Z</dcterms:available> <dc:creator>Fuchs, Johannes</dc:creator> <dc:contributor>Zhang, Xuan</dc:contributor> <dcterms:issued>2020-07-18</dcterms:issued> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:creator>Zhang, Xuan</dc:creator> </rdf:Description> </rdf:RDF>