Publikation:

Nonuniqueness of Admissible Weak Solution to the Riemann Problem for the Full Euler System in Two Dimensions

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2020

Autor:innen

Al Baba, Hind
Klingenberg, Christian
Kreml, Ondřej
Mácha, Václav

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

European Union (EU): 320078

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

SIAM Journal on Mathematical Analysis. Society for Industrial & Applied Mathematics (SIAM). 2020, 52(2), S. 1729-1760. ISSN 0036-1410. eISSN 1095-7154. Verfügbar unter: doi: 10.1137/18m1190872

Zusammenfassung

The question of well- and ill-posedness of entropy admissible solutions to the multi-dimensional systems of conservation laws has been studied recently in the case of isentropic Euler equations. In this context special initial data were considered, namely the 1D Riemann problem which is extended trivially to a second space dimension. It was shown that there exist infinitely many bounded entropy admissible weak solutions to such a 2D Riemann problem for isentropic Euler equations if the initial data give rise to a 1D self-similar solution containing a shock. In this work we study such a 2D Riemann problem for the full Euler system in two space dimensions and prove the existence of infinitely many bounded entropy admissible weak solutions in the case that the Riemann initial data give rise to the 1D self-similar solution consisting of two shocks and possibly a contact discontinuity.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

compressible Euler system, nonuniqueness, Riemann problem

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690AL BABA, Hind, Christian KLINGENBERG, Ondřej KREML, Václav MÁCHA, Simon MARKFELDER, 2020. Nonuniqueness of Admissible Weak Solution to the Riemann Problem for the Full Euler System in Two Dimensions. In: SIAM Journal on Mathematical Analysis. Society for Industrial & Applied Mathematics (SIAM). 2020, 52(2), S. 1729-1760. ISSN 0036-1410. eISSN 1095-7154. Verfügbar unter: doi: 10.1137/18m1190872
BibTex
@article{AlBaba2020-01Nonun-71890,
  year={2020},
  doi={10.1137/18m1190872},
  title={Nonuniqueness of Admissible Weak Solution to the Riemann Problem for the Full Euler System in Two Dimensions},
  number={2},
  volume={52},
  issn={0036-1410},
  journal={SIAM Journal on Mathematical Analysis},
  pages={1729--1760},
  author={Al Baba, Hind and Klingenberg, Christian and Kreml, Ondřej and Mácha, Václav and Markfelder, Simon}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/71890">
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Mácha, Václav</dc:creator>
    <dc:contributor>Klingenberg, Christian</dc:contributor>
    <dc:contributor>Al Baba, Hind</dc:contributor>
    <dcterms:abstract>The question of well- and ill-posedness of entropy admissible solutions to the multi-dimensional systems of conservation laws has been studied recently in the case of isentropic Euler equations. In this context special initial data were considered, namely the 1D Riemann problem which is extended trivially to a second space dimension. It was shown that there exist infinitely many bounded entropy admissible weak solutions to such a 2D Riemann problem for isentropic Euler equations if the initial data give rise to a 1D self-similar solution containing a shock. In this work we study such a 2D Riemann problem for the full Euler system in two space dimensions and prove the existence of infinitely many bounded entropy admissible weak solutions in the case that the Riemann initial data give rise to the 1D self-similar solution consisting of two shocks and possibly a contact discontinuity.</dcterms:abstract>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-01-15T09:51:01Z</dcterms:available>
    <dcterms:issued>2020-01</dcterms:issued>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:language>eng</dc:language>
    <dc:creator>Markfelder, Simon</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:creator>Al Baba, Hind</dc:creator>
    <dcterms:title>Nonuniqueness of Admissible Weak Solution to the Riemann Problem for the Full Euler System in Two Dimensions</dcterms:title>
    <dc:contributor>Markfelder, Simon</dc:contributor>
    <dc:creator>Kreml, Ondřej</dc:creator>
    <dc:contributor>Kreml, Ondřej</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-01-15T09:51:01Z</dc:date>
    <dc:creator>Klingenberg, Christian</dc:creator>
    <dc:contributor>Mácha, Václav</dc:contributor>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/71890"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Ja
Diese Publikation teilen