Publikation: Nonuniqueness of Admissible Weak Solution to the Riemann Problem for the Full Euler System in Two Dimensions
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
The question of well- and ill-posedness of entropy admissible solutions to the multi-dimensional systems of conservation laws has been studied recently in the case of isentropic Euler equations. In this context special initial data were considered, namely the 1D Riemann problem which is extended trivially to a second space dimension. It was shown that there exist infinitely many bounded entropy admissible weak solutions to such a 2D Riemann problem for isentropic Euler equations if the initial data give rise to a 1D self-similar solution containing a shock. In this work we study such a 2D Riemann problem for the full Euler system in two space dimensions and prove the existence of infinitely many bounded entropy admissible weak solutions in the case that the Riemann initial data give rise to the 1D self-similar solution consisting of two shocks and possibly a contact discontinuity.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
AL BABA, Hind, Christian KLINGENBERG, Ondřej KREML, Václav MÁCHA, Simon MARKFELDER, 2020. Nonuniqueness of Admissible Weak Solution to the Riemann Problem for the Full Euler System in Two Dimensions. In: SIAM Journal on Mathematical Analysis. Society for Industrial & Applied Mathematics (SIAM). 2020, 52(2), S. 1729-1760. ISSN 0036-1410. eISSN 1095-7154. Verfügbar unter: doi: 10.1137/18m1190872BibTex
@article{AlBaba2020-01Nonun-71890, year={2020}, doi={10.1137/18m1190872}, title={Nonuniqueness of Admissible Weak Solution to the Riemann Problem for the Full Euler System in Two Dimensions}, number={2}, volume={52}, issn={0036-1410}, journal={SIAM Journal on Mathematical Analysis}, pages={1729--1760}, author={Al Baba, Hind and Klingenberg, Christian and Kreml, Ondřej and Mácha, Václav and Markfelder, Simon} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/71890"> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Mácha, Václav</dc:creator> <dc:contributor>Klingenberg, Christian</dc:contributor> <dc:contributor>Al Baba, Hind</dc:contributor> <dcterms:abstract>The question of well- and ill-posedness of entropy admissible solutions to the multi-dimensional systems of conservation laws has been studied recently in the case of isentropic Euler equations. In this context special initial data were considered, namely the 1D Riemann problem which is extended trivially to a second space dimension. It was shown that there exist infinitely many bounded entropy admissible weak solutions to such a 2D Riemann problem for isentropic Euler equations if the initial data give rise to a 1D self-similar solution containing a shock. In this work we study such a 2D Riemann problem for the full Euler system in two space dimensions and prove the existence of infinitely many bounded entropy admissible weak solutions in the case that the Riemann initial data give rise to the 1D self-similar solution consisting of two shocks and possibly a contact discontinuity.</dcterms:abstract> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-01-15T09:51:01Z</dcterms:available> <dcterms:issued>2020-01</dcterms:issued> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:language>eng</dc:language> <dc:creator>Markfelder, Simon</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:creator>Al Baba, Hind</dc:creator> <dcterms:title>Nonuniqueness of Admissible Weak Solution to the Riemann Problem for the Full Euler System in Two Dimensions</dcterms:title> <dc:contributor>Markfelder, Simon</dc:contributor> <dc:creator>Kreml, Ondřej</dc:creator> <dc:contributor>Kreml, Ondřej</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-01-15T09:51:01Z</dc:date> <dc:creator>Klingenberg, Christian</dc:creator> <dc:contributor>Mácha, Václav</dc:contributor> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/71890"/> </rdf:Description> </rdf:RDF>