Towards Acquisition of Semantics of Places and Events by Multi-perspective Analysis of Geotagged Photo Collections
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Due to the pervasiveness of positioning technology combined with the proliferation of socially-oriented web sites, community-contributed spatio-temporal data of people’s historical positions are available today in large amounts. The analysis of these data is valuable to scientists and can provide important information about people’s behavior, their movement, geographical places, and events. In this paper, we develop a conceptual framework and outline a methodology that allows us to analyze events and places using geotagged photo collections shared by people from many countries. These data are often semantically annotated by titles and tags that are useful for learning facts about the geographical places and for detecting events occurring in these places. The knowledge obtained through our analysis carries an additional benefit. For example, it may also be utilized by local authorities, service providers, tourist agencies, in sociological and anthropological studies or for building user centric applications like tour recommender systems. We provide a conceptual foundation for the analysis of spatio-temporal data of places visited by people worldwide using community contributed geotagged photo collections. First, we define several types of spatio-temporal clusters of people’s visits. Second, we discuss methods that can be used for analysis of these clusters. Third, we offer an analysis of tourist activities in Switzerland based on a case study.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
KISILEVICH, Slava, Daniel A. KEIM, Natalia ANDRIENKO, Gennady L. ANDRIENKO, 2013. Towards Acquisition of Semantics of Places and Events by Multi-perspective Analysis of Geotagged Photo Collections. In: MOORE, Antoni, ed., Igor DRECKI, ed.. Geospatial Visualisation. Berlin [u.a.]: Springer Berlin Heidelberg, 2013, pp. 211-233. Lecture Notes in Geoinformation and Cartography. ISBN 978-3-642-12288-0. Available under: doi: 10.1007/978-3-642-12289-7_10BibTex
@incollection{Kisilevich2013Towar-38214, year={2013}, doi={10.1007/978-3-642-12289-7_10}, title={Towards Acquisition of Semantics of Places and Events by Multi-perspective Analysis of Geotagged Photo Collections}, isbn={978-3-642-12288-0}, publisher={Springer Berlin Heidelberg}, address={Berlin [u.a.]}, series={Lecture Notes in Geoinformation and Cartography}, booktitle={Geospatial Visualisation}, pages={211--233}, editor={Moore, Antoni and Drecki, Igor}, author={Kisilevich, Slava and Keim, Daniel A. and Andrienko, Natalia and Andrienko, Gennady L.} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/38214"> <dc:contributor>Andrienko, Natalia</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:creator>Kisilevich, Slava</dc:creator> <dc:contributor>Keim, Daniel A.</dc:contributor> <dc:creator>Andrienko, Gennady L.</dc:creator> <dc:creator>Andrienko, Natalia</dc:creator> <dcterms:title>Towards Acquisition of Semantics of Places and Events by Multi-perspective Analysis of Geotagged Photo Collections</dcterms:title> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/38214"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Andrienko, Gennady L.</dc:contributor> <dcterms:abstract xml:lang="eng">Due to the pervasiveness of positioning technology combined with the proliferation of socially-oriented web sites, community-contributed spatio-temporal data of people’s historical positions are available today in large amounts. The analysis of these data is valuable to scientists and can provide important information about people’s behavior, their movement, geographical places, and events. In this paper, we develop a conceptual framework and outline a methodology that allows us to analyze events and places using geotagged photo collections shared by people from many countries. These data are often semantically annotated by titles and tags that are useful for learning facts about the geographical places and for detecting events occurring in these places. The knowledge obtained through our analysis carries an additional benefit. For example, it may also be utilized by local authorities, service providers, tourist agencies, in sociological and anthropological studies or for building user centric applications like tour recommender systems. We provide a conceptual foundation for the analysis of spatio-temporal data of places visited by people worldwide using community contributed geotagged photo collections. First, we define several types of spatio-temporal clusters of people’s visits. Second, we discuss methods that can be used for analysis of these clusters. Third, we offer an analysis of tourist activities in Switzerland based on a case study.</dcterms:abstract> <dc:language>eng</dc:language> <dc:contributor>Kisilevich, Slava</dc:contributor> <dcterms:issued>2013</dcterms:issued> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:creator>Keim, Daniel A.</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-03-30T08:38:50Z</dcterms:available> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-03-30T08:38:50Z</dc:date> </rdf:Description> </rdf:RDF>