Publikation:

Learning and Rewriting in Fuzzy Rule Graphs

Lade...
Vorschaubild

Dateien

Fischer_240751.pdf
Fischer_240751.pdfGröße: 171.65 KBDownloads: 372

Datum

2003

Autor:innen

Fischer, Ingrid
Koch, Manuel

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

NAGL, Manfred, ed., Andreas SCHÜRR, ed., Manfred MÜNCH, ed.. Applications of Graph Transformations with Industrial Relevance. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003, pp. 263-271. Lecture Notes in Computer Science. 1779. ISBN 978-3-540-67658-4. Available under: doi: 10.1007/3-540-45104-8_21

Zusammenfassung

Different learning algorithms based on learning from examples are described based on a set of graph rewrite rules. Starting from either a very general or a very special rule set which is modeled as graph, two to three basic rewrite rules are applied until a rule graph explaining all examples is reached. The rewrite rules can also be used to model the corresponding hypothesis space as they describe partial relations between different rule set graphs. The possible paths, algorithms can take through the hypothesis space can be described as application sequences. This schema is applied to general learning algorithms as well as to fuzzy rule learning algorithms.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690FISCHER, Ingrid, Manuel KOCH, Michael R. BERTHOLD, 2003. Learning and Rewriting in Fuzzy Rule Graphs. In: NAGL, Manfred, ed., Andreas SCHÜRR, ed., Manfred MÜNCH, ed.. Applications of Graph Transformations with Industrial Relevance. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003, pp. 263-271. Lecture Notes in Computer Science. 1779. ISBN 978-3-540-67658-4. Available under: doi: 10.1007/3-540-45104-8_21
BibTex
@inproceedings{Fischer2003-04-18Learn-24075,
  year={2003},
  doi={10.1007/3-540-45104-8_21},
  title={Learning and Rewriting in Fuzzy Rule Graphs},
  number={1779},
  isbn={978-3-540-67658-4},
  publisher={Springer Berlin Heidelberg},
  address={Berlin, Heidelberg},
  series={Lecture Notes in Computer Science},
  booktitle={Applications of Graph Transformations with Industrial Relevance},
  pages={263--271},
  editor={Nagl, Manfred and Schürr, Andreas and Münch, Manfred},
  author={Fischer, Ingrid and Koch, Manuel and Berthold, Michael R.}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/24075">
    <dc:language>eng</dc:language>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:contributor>Berthold, Michael R.</dc:contributor>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/24075/1/Fischer_240751.pdf"/>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:issued>2003-04-18</dcterms:issued>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/24075"/>
    <dc:creator>Fischer, Ingrid</dc:creator>
    <dcterms:title>Learning and Rewriting in Fuzzy Rule Graphs</dcterms:title>
    <dc:creator>Berthold, Michael R.</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>Fischer, Ingrid</dc:contributor>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/24075/1/Fischer_240751.pdf"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-07-18T08:57:37Z</dcterms:available>
    <dc:creator>Koch, Manuel</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-07-18T08:57:37Z</dc:date>
    <dc:contributor>Koch, Manuel</dc:contributor>
    <dcterms:bibliographicCitation>Applications of graph transformations with industrial relevance : International Workshop, AGTIVE '99, Kerkrade, The Netherlands, September 1 - 3, 1999; proceedings / Manfred Nagl ... (ed.). - Berlin [u.a.] : Springer, 2000. - S. 263-271. - (Lecture notes in computer science ; 1779). - ISBN 3-540-67658-9</dcterms:bibliographicCitation>
    <dcterms:abstract xml:lang="eng">Different learning algorithms based on learning from examples are described based on a set of graph rewrite rules. Starting from either a very general or a very special rule set which is modeled as graph, two to three basic rewrite rules are applied until a rule graph explaining all examples is reached. The rewrite rules can also be used to model the corresponding hypothesis space as they describe partial relations between different rule set graphs. The possible paths, algorithms can take through the hypothesis space can be described as application sequences. This schema is applied to general learning algorithms as well as to fuzzy rule learning algorithms.</dcterms:abstract>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Diese Publikation teilen