Publikation:

Using computer vision to study animal behavior in natural environments

Lade...
Vorschaubild

Dateien

Koger_2-cln9x7dw6e5m3.pdf
Koger_2-cln9x7dw6e5m3.pdfGröße: 55.91 MBDownloads: 99

Datum

2022

Autor:innen

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Dissertation
Publikationsstatus
Published

Erschienen in

Zusammenfassung

Understanding how animals behave in the context of their physical and social environments is fundamental to the study of animal behavior. While observing animal behavior in the field is always challenging, it becomes much harder, and in some cases even impossible when multiple animals are behaving together. Despite this challenge, collective dynamics are of wide interest across fields ranging from robotics to neuroscience to conservation. While catching and tagging animals is a common way to study animal movement dynamics in complex environments, this approach has many drawbacks. As an alternative, I highlight the utility of pairing high-resolution imaging with convolutional neural networks to study behavior in the field. In this thesis, I present three chapters, each of which presents a new method that allows researchers to extract high quality data about groups of animals behaving in naturalistic environments.
In chapter 1, I demonstrate a system that, using ten inexpensive consumer cameras, can robustly estimate the population size of the largest fruit bat colony in Africa. Beyond population estimates, this method also quantifies behavioral measures like flight altitude, wing beat frequency and local neighborhood polarity for thousands of bats each night. I combine threshold-based object detection techniques with neural networks to achieve the robustness of neural networks but without humans having to explicitly annotate training data.
In chapter 2, I demonstrate a system that combines imaging drones, machine learning, and landscape mapping techniques to record the movement of free ranging groups of animals at high spatial and temporal resolution across natural landscapes. This approach reconstructs the trajectories of all individuals in the group in 3D landscape maps generated from the same 4 observation videos while also quantifying individual features like animal posture, species, and age/sex class.
Finally, in chapter 3, I demonstrate a system that uses semantic segmentation to classify, for every pixel in an image of a honey bee frame, both its comb cell type as well as any contents that it may contain (honey or pollen for example). For the first time, this purely automated method allows researchers to study, through data about the nest, how honey bees, a model organism for distributed organization, build their nests and allocate space within it. Combined, these three chapters clearly demonstrate the potential for using automated image-based approaches to study animal behavior in complex natural environments.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
570 Biowissenschaften, Biologie

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690KOGER, Benjamin, 2022. Using computer vision to study animal behavior in natural environments [Dissertation]. Konstanz: University of Konstanz
BibTex
@phdthesis{Koger2022Using-59875,
  year={2022},
  title={Using computer vision to study animal behavior in natural environments},
  author={Koger, Benjamin},
  address={Konstanz},
  school={Universität Konstanz}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/59875">
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/59875/3/Koger_2-cln9x7dw6e5m3.pdf"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/59875/3/Koger_2-cln9x7dw6e5m3.pdf"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dcterms:issued>2022</dcterms:issued>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:title>Using computer vision to study animal behavior in natural environments</dcterms:title>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/59875"/>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dc:creator>Koger, Benjamin</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-01-23T06:26:03Z</dcterms:available>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:language>eng</dc:language>
    <dcterms:abstract xml:lang="eng">Understanding how animals behave in the context of their physical and social environments is fundamental to the study of animal behavior. While observing animal behavior in the field is always challenging, it becomes much harder, and in some cases even impossible when multiple animals are behaving together. Despite this challenge, collective dynamics are of wide interest across fields ranging from robotics to neuroscience to conservation. While catching and tagging animals is a common way to study animal movement dynamics in complex environments, this approach has many drawbacks. As an alternative, I highlight the utility of pairing high-resolution imaging with convolutional neural networks to study behavior in the field. In this thesis, I present three chapters, each of which presents a new method that allows researchers to extract high quality data about groups of animals behaving in naturalistic environments.&lt;br /&gt;In chapter 1, I demonstrate a system that, using ten inexpensive consumer cameras, can robustly estimate the population size of the largest fruit bat colony in Africa. Beyond population estimates, this method also quantifies behavioral measures like flight altitude, wing beat frequency and local neighborhood polarity for thousands of bats each night. I combine threshold-based object detection techniques with neural networks to achieve the robustness of neural networks but without humans having to explicitly annotate training data.&lt;br /&gt;In chapter 2, I demonstrate a system that combines imaging drones, machine learning, and landscape mapping techniques to record the movement of free ranging groups of animals at high spatial and temporal resolution across natural landscapes. This approach reconstructs the trajectories of all individuals in the group in 3D landscape maps generated from the same 4 observation videos while also quantifying individual features like animal posture, species, and age/sex class.&lt;br /&gt;Finally, in chapter 3, I demonstrate a system that uses semantic segmentation to classify, for every pixel in an image of a honey bee frame, both its comb cell type as well as any contents that it may contain (honey or pollen for example). For the first time, this purely automated method allows researchers to study, through data about the nest, how honey bees, a model organism for distributed organization, build their nests and allocate space within it. Combined, these three chapters clearly demonstrate the potential for using automated image-based approaches to study animal behavior in complex natural environments.</dcterms:abstract>
    <dc:contributor>Koger, Benjamin</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-01-23T06:26:03Z</dc:date>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

September 5, 2022
Hochschulschriftenvermerk
Konstanz, Univ., Diss., 2022
Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Diese Publikation teilen