Data-aware 3D partitioning for generic shape retrieval
Data-aware 3D partitioning for generic shape retrieval
Loading...
Date
2013
Authors
Editors
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
URI (citable link)
DOI (citable link)
International patent number
Link to the license
EU project number
Project
Open Access publication
Collections
Title in another language
Publication type
Journal article
Publication status
Published in
Computers & Graphics ; 37 (2013), 5. - pp. 460-472. - ISSN 0097-8493
Abstract
In this paper, we present a new approach for generic 3D shape retrieval based on a mesh partitioning scheme. Our method combines a mesh global description and mesh partition descriptions to represent a 3D shape. The partitioning is useful because it helps us to extract additional information in a more local sense. Thus, part descriptions can mitigate the semantic gap imposed by global description methods. We propose to find spatial agglomerations of local features to generate mesh partitions. Hence, the definition of a distance function is stated as an optimization problem to find the best match between two shape representations. We show that mesh partitions are representative and therefore it helps to improve the effectiveness in retrieval tasks. We present exhaustive experimentation using the SHREC'09 Generic Shape Retrieval Benchmark.
Summary in another language
Subject (DDC)
004 Computer Science
Keywords
Mesh partitioning,optimization matching,shape retrieval
Conference
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690
SIPIRAN, Ivan, Benjamin BUSTOS, Tobias SCHRECK, 2013. Data-aware 3D partitioning for generic shape retrieval. In: Computers & Graphics. 37(5), pp. 460-472. ISSN 0097-8493. Available under: doi: 10.1016/j.cag.2013.04.002BibTex
@article{Sipiran2013Dataa-24360, year={2013}, doi={10.1016/j.cag.2013.04.002}, title={Data-aware 3D partitioning for generic shape retrieval}, number={5}, volume={37}, issn={0097-8493}, journal={Computers & Graphics}, pages={460--472}, author={Sipiran, Ivan and Bustos, Benjamin and Schreck, Tobias} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/24360"> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:contributor>Schreck, Tobias</dc:contributor> <dc:creator>Bustos, Benjamin</dc:creator> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/24360/2/Sipiran_243601.pdf"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:language>eng</dc:language> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Sipiran, Ivan</dc:contributor> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-09-11T09:01:45Z</dc:date> <dc:creator>Sipiran, Ivan</dc:creator> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/24360"/> <dcterms:issued>2013</dcterms:issued> <dc:creator>Schreck, Tobias</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-05-31T22:25:04Z</dcterms:available> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/24360/2/Sipiran_243601.pdf"/> <dcterms:title>Data-aware 3D partitioning for generic shape retrieval</dcterms:title> <dc:contributor>Bustos, Benjamin</dc:contributor> <dcterms:bibliographicCitation>Computers & Graphics ; 37 (2013), 5. - S. 460-472</dcterms:bibliographicCitation> <dcterms:abstract xml:lang="eng">In this paper, we present a new approach for generic 3D shape retrieval based on a mesh partitioning scheme. Our method combines a mesh global description and mesh partition descriptions to represent a 3D shape. The partitioning is useful because it helps us to extract additional information in a more local sense. Thus, part descriptions can mitigate the semantic gap imposed by global description methods. We propose to find spatial agglomerations of local features to generate mesh partitions. Hence, the definition of a distance function is stated as an optimization problem to find the best match between two shape representations. We show that mesh partitions are representative and therefore it helps to improve the effectiveness in retrieval tasks. We present exhaustive experimentation using the SHREC'09 Generic Shape Retrieval Benchmark.</dcterms:abstract> <dc:rights>terms-of-use</dc:rights> </rdf:Description> </rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Examination date of dissertation
Method of financing
Comment on publication
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
Yes