Publikation: Data-aware 3D partitioning for generic shape retrieval
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
In this paper, we present a new approach for generic 3D shape retrieval based on a mesh partitioning scheme. Our method combines a mesh global description and mesh partition descriptions to represent a 3D shape. The partitioning is useful because it helps us to extract additional information in a more local sense. Thus, part descriptions can mitigate the semantic gap imposed by global description methods. We propose to find spatial agglomerations of local features to generate mesh partitions. Hence, the definition of a distance function is stated as an optimization problem to find the best match between two shape representations. We show that mesh partitions are representative and therefore it helps to improve the effectiveness in retrieval tasks. We present exhaustive experimentation using the SHREC'09 Generic Shape Retrieval Benchmark.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
SIPIRAN, Ivan, Benjamin BUSTOS, Tobias SCHRECK, 2013. Data-aware 3D partitioning for generic shape retrieval. In: Computers & Graphics. 2013, 37(5), pp. 460-472. ISSN 0097-8493. Available under: doi: 10.1016/j.cag.2013.04.002BibTex
@article{Sipiran2013Dataa-24360, year={2013}, doi={10.1016/j.cag.2013.04.002}, title={Data-aware 3D partitioning for generic shape retrieval}, number={5}, volume={37}, issn={0097-8493}, journal={Computers & Graphics}, pages={460--472}, author={Sipiran, Ivan and Bustos, Benjamin and Schreck, Tobias} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/24360"> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:contributor>Schreck, Tobias</dc:contributor> <dc:creator>Bustos, Benjamin</dc:creator> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/24360/2/Sipiran_243601.pdf"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:language>eng</dc:language> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Sipiran, Ivan</dc:contributor> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-09-11T09:01:45Z</dc:date> <dc:creator>Sipiran, Ivan</dc:creator> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/24360"/> <dcterms:issued>2013</dcterms:issued> <dc:creator>Schreck, Tobias</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-05-31T22:25:04Z</dcterms:available> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/24360/2/Sipiran_243601.pdf"/> <dcterms:title>Data-aware 3D partitioning for generic shape retrieval</dcterms:title> <dc:contributor>Bustos, Benjamin</dc:contributor> <dcterms:bibliographicCitation>Computers & Graphics ; 37 (2013), 5. - S. 460-472</dcterms:bibliographicCitation> <dcterms:abstract xml:lang="eng">In this paper, we present a new approach for generic 3D shape retrieval based on a mesh partitioning scheme. Our method combines a mesh global description and mesh partition descriptions to represent a 3D shape. The partitioning is useful because it helps us to extract additional information in a more local sense. Thus, part descriptions can mitigate the semantic gap imposed by global description methods. We propose to find spatial agglomerations of local features to generate mesh partitions. Hence, the definition of a distance function is stated as an optimization problem to find the best match between two shape representations. We show that mesh partitions are representative and therefore it helps to improve the effectiveness in retrieval tasks. We present exhaustive experimentation using the SHREC'09 Generic Shape Retrieval Benchmark.</dcterms:abstract> <dc:rights>terms-of-use</dc:rights> </rdf:Description> </rdf:RDF>