ML-estimation in the location-scale-shape model of the generalized logistic

Lade...
Vorschaubild
Dateien
02-15.pdf
02-15.pdfGröße: 406.36 KBDownloads: 198
Datum
2002
Autor:innen
Abberger, Klaus
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Auflagebezeichnung
DOI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Publikationstyp
Working Paper/Technical Report
Publikationsstatus
Published
Erschienen in
Zusammenfassung

A three parameter (location, scale, shape) generalization of the lo- gistic distribution is fitted to data. Local maximum likelihood estimators of the parameters are derived. Although the likelihood function is unbounded, the like- lihood equations have a consistent root. ML-estimation combined with the ECM algorithm allows the distribution to be easily fitted to data.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
330 Wirtschaft
Schlagwörter
ECM algorithm, generalized logistic distribution, location-scale-shape model, maximum likelihood estimation
Konferenz
Rezension
undefined / . - undefined, undefined
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Datensätze
Zitieren
ISO 690ABBERGER, Klaus, 2002. ML-estimation in the location-scale-shape model of the generalized logistic
BibTex
@techreport{Abberger2002MLest-12185,
  year={2002},
  series={CoFE-Diskussionspapiere / Zentrum für Finanzen und Ökonometrie},
  title={ML-estimation in the location-scale-shape model of the generalized logistic},
  number={2002/15},
  author={Abberger, Klaus}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/12185">
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-25T09:43:17Z</dcterms:available>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/12185/1/02-15.pdf"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/46"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/46"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/12185/1/02-15.pdf"/>
    <dc:creator>Abberger, Klaus</dc:creator>
    <dcterms:abstract xml:lang="deu">A three parameter (location, scale, shape) generalization of the lo- gistic distribution is fitted to data. Local maximum likelihood estimators of the parameters are derived. Although the likelihood function is unbounded, the like- lihood equations have a consistent root. ML-estimation combined with the ECM algorithm allows the distribution to be easily fitted to data.</dcterms:abstract>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/12185"/>
    <dcterms:title>ML-estimation in the location-scale-shape model of the generalized logistic</dcterms:title>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:format>application/pdf</dc:format>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:contributor>Abberger, Klaus</dc:contributor>
    <dcterms:issued>2002</dcterms:issued>
    <dc:rights>terms-of-use</dc:rights>
    <dc:language>deu</dc:language>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-25T09:43:17Z</dc:date>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Begutachtet
Diese Publikation teilen