Publikation:

Stability of perfect-fluid shock waves in special and general relativity

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2007

Autor:innen

Raoofi, Mohammedreza

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Classical and Quantum Gravity. 2007, 24(17), pp. 4439-4455. ISSN 0264-9381. eISSN 1361-6382. Available under: doi: 10.1088/0264-9381/24/17/011

Zusammenfassung

For general relativity, the persistence problem of shock fronts in perfect fluids is also a continuation problem for a pseudo-Riemannian metric of reduced regularity. In this paper, the problem is solved by considerations on a Cauchy problem which combines a well-known formulation of the Einstein–Euler equations as a first-order symmetric hyperbolic system and Rankine–Hugoniottype jump conditions for the fluid variables with an extra (non-)jump condition for the first derivatives of the metric. This ansatz corresponds to the use of space-time coordinates which are natural in the sense of Israel and harmonic at the same time. As in non-relativistic settings, the shock front must satisfy a Kreiss–Lopatinski condition in order for the persistence result to apply. The paper also shows that under standard assumptions on the fluid’s equation of state, this condition actually holds for all meaningful shock data.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690FREISTÜHLER, Heinrich, Mohammedreza RAOOFI, 2007. Stability of perfect-fluid shock waves in special and general relativity. In: Classical and Quantum Gravity. 2007, 24(17), pp. 4439-4455. ISSN 0264-9381. eISSN 1361-6382. Available under: doi: 10.1088/0264-9381/24/17/011
BibTex
@article{Freistuhler2007-09-07Stabi-40756,
  year={2007},
  doi={10.1088/0264-9381/24/17/011},
  title={Stability of perfect-fluid shock waves in special and general relativity},
  number={17},
  volume={24},
  issn={0264-9381},
  journal={Classical and Quantum Gravity},
  pages={4439--4455},
  author={Freistühler, Heinrich and Raoofi, Mohammedreza}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/40756">
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Raoofi, Mohammedreza</dc:creator>
    <dcterms:issued>2007-09-07</dcterms:issued>
    <dc:contributor>Raoofi, Mohammedreza</dc:contributor>
    <dc:language>eng</dc:language>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-11-28T14:16:24Z</dc:date>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/40756"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-11-28T14:16:24Z</dcterms:available>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:abstract xml:lang="eng">For general relativity, the persistence problem of shock fronts in perfect fluids is also a continuation problem for a pseudo-Riemannian metric of reduced regularity. In this paper, the problem is solved by considerations on a Cauchy problem which combines a well-known formulation of the Einstein–Euler equations as a first-order symmetric hyperbolic system and Rankine–Hugoniottype jump conditions for the fluid variables with an extra (non-)jump condition for the first derivatives of the metric. This ansatz corresponds to the use of space-time coordinates which are natural in the sense of Israel and harmonic at the same time. As in non-relativistic settings, the shock front must satisfy a Kreiss–Lopatinski condition in order for the persistence result to apply. The paper also shows that under standard assumptions on the fluid’s equation of state, this condition actually holds for all meaningful shock data.</dcterms:abstract>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:contributor>Freistühler, Heinrich</dc:contributor>
    <dc:creator>Freistühler, Heinrich</dc:creator>
    <dcterms:title>Stability of perfect-fluid shock waves in special and general relativity</dcterms:title>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Diese Publikation teilen