Publikation:

Normalizing Digital Trace Data

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2019

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Sammelband
Publikationsstatus
Published

Erschienen in

STROUD, Natalie Jomini, ed., Shannon C. MCGREGOR, ed.. Digital discussions : how big data informs political communication. New York, USA: Routledge : Taylor & Francis Group, 2019, pp. 9-35. ISBN 978-0-8153-8380-2

Zusammenfassung

Gradually, over the last ten years, social scientists have found themselves confronting a massive increase in available data sources. The digitalization has, for example, opened up vast textual corpora (Grimmer & Stewart, 2013) and provided researchers with cheap and fast alternatives to telephone or face-to-face surveys (Callegaro, Manfreda, & Vehovar, 2015). Additionally, the growing use of digital services in everyday life provides social scientists with an ever increasing reservoir of digital data traces documenting slices of users’ everyday interactions with various digital devices or services (Howison, Wiggins, & Crowston, 2011). This increase in the variety and size of data available to researchers has been heralded by some as a measurement revolution for the social sciences (Golder & Macy, 2014; Lazer, Pentland, Adamic, Aral, Barabási, Brewer, Christakis, Contractor, Fowler, Gutmann, Jebara, King, Macy, Roy, & Van Alstyne, 2009; Schroeder, 2016; Watts, 2011). Especially, the research potential of digital trace data (Howison et al., 2011) has featured prominently in these accounts.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
320 Politik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690JUNGHERR, Andreas, 2019. Normalizing Digital Trace Data. In: STROUD, Natalie Jomini, ed., Shannon C. MCGREGOR, ed.. Digital discussions : how big data informs political communication. New York, USA: Routledge : Taylor & Francis Group, 2019, pp. 9-35. ISBN 978-0-8153-8380-2
BibTex
@incollection{Jungherr2019Norma-44547,
  year={2019},
  title={Normalizing Digital Trace Data},
  isbn={978-0-8153-8380-2},
  publisher={Routledge : Taylor & Francis Group},
  address={New York, USA},
  booktitle={Digital discussions : how big data informs political communication},
  pages={9--35},
  editor={Stroud, Natalie Jomini and McGregor, Shannon C.},
  author={Jungherr, Andreas}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/44547">
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43613"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-01-14T11:04:52Z</dcterms:available>
    <dc:contributor>Jungherr, Andreas</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43613"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:issued>2019</dcterms:issued>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-01-14T11:04:52Z</dc:date>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42"/>
    <dcterms:title>Normalizing Digital Trace Data</dcterms:title>
    <dc:language>eng</dc:language>
    <dc:creator>Jungherr, Andreas</dc:creator>
    <dcterms:abstract xml:lang="eng">Gradually, over the last ten years, social scientists have found themselves confronting a massive increase in available data sources. The digitalization has, for example, opened up vast textual corpora (Grimmer &amp; Stewart, 2013) and provided researchers with cheap and fast alternatives to telephone or face-to-face surveys (Callegaro, Manfreda, &amp; Vehovar, 2015). Additionally, the growing use of digital services in everyday life provides social scientists with an ever increasing reservoir of digital data traces documenting slices of users’ everyday interactions with various digital devices or services (Howison, Wiggins, &amp; Crowston, 2011). This increase in the variety and size of data available to researchers has been heralded by some as a measurement revolution for the social sciences (Golder &amp; Macy, 2014; Lazer, Pentland, Adamic, Aral, Barabási, Brewer, Christakis, Contractor, Fowler, Gutmann, Jebara, King, Macy, Roy, &amp; Van Alstyne, 2009; Schroeder, 2016; Watts, 2011). Especially, the research potential of digital trace data (Howison et al., 2011) has featured prominently in these accounts.</dcterms:abstract>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/44547"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen