Lp-resolvent estimates and time decay for generalized thermoelastic plate equations

Loading...
Thumbnail Image
Date
2005
Editors
Contact
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
Konstanzer Schriften in Mathematik und Informatik; 208
DOI (citable link)
ArXiv-ID
International patent number
Link to the license
EU project number
Project
Open Access publication
Restricted until
Title in another language
Research Projects
Organizational Units
Journal Issue
Publication type
Preprint
Publication status
Published in
Abstract
We consider the Cauchy problem for a coupled system generalizing the thermoelastic plate equations. First we prove resolvent estimates for the stationary operator and conclude the analyticity of the associated semigroup in Lp-spaces 1 < p <∞, for certain values of the parameters of the system; here the Newton polygon method is used.
Summary in another language
Subject (DDC)
510 Mathematics
Keywords
Conference
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690DENK, Robert, Reinhard RACKE, 2005. Lp-resolvent estimates and time decay for generalized thermoelastic plate equations
BibTex
@unpublished{Denk2005Lpres-589,
  year={2005},
  title={Lp-resolvent estimates and time decay for generalized thermoelastic plate equations},
  author={Denk, Robert and Racke, Reinhard}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/589">
    <dc:creator>Denk, Robert</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-22T17:45:09Z</dc:date>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:title>Lp-resolvent estimates and time decay for generalized thermoelastic plate equations</dcterms:title>
    <dcterms:abstract xml:lang="eng">We consider the Cauchy problem for a coupled system generalizing the thermoelastic plate equations. First we prove resolvent estimates for the stationary operator and conclude the analyticity of the associated semigroup in Lp-spaces 1 &lt; p &lt;∞, for certain values of the parameters of the system; here the Newton polygon method is used.</dcterms:abstract>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/589/1/preprint_208.pdf"/>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:issued>2005</dcterms:issued>
    <dc:creator>Racke, Reinhard</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-22T17:45:09Z</dcterms:available>
    <dc:contributor>Denk, Robert</dc:contributor>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/589"/>
    <dc:format>application/pdf</dc:format>
    <dc:contributor>Racke, Reinhard</dc:contributor>
    <dc:language>eng</dc:language>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/589/1/preprint_208.pdf"/>
  </rdf:Description>
</rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Contact
URL of original publication
Test date of URL
Examination date of dissertation
Method of financing
Comment on publication
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
Yes
Refereed