An automated approach for counting groups of flying animals applied to one of the world's largest bat colonies

Lade...
Vorschaubild
Dateien
Koger_2-d70qb9izqhdw2.pdf
Koger_2-d70qb9izqhdw2.pdfGröße: 6.56 MBDownloads: 52
Datum
2023
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Deutsche Forschungsgemeinschaft (DFG): 422037984
Projekt
Open Access-Veröffentlichung
Open Access Gold
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Zusammenfassung

Estimating animal populations is essential for conservation. Censusing large congregations is especially important since these are priorities for protection, but efficiently counting hundreds of thousands of moving animals remains a challenge. We developed a deep learning-based system using consumer cameras that not only counts but also records behavioral information for large numbers of flying animals in a range of lighting conditions including near darkness. We built a robust training set without human labeling by leveraging data augmentation and background subtraction. We demonstrate this approach by estimating the size of a straw-colored fruit bat (Eidolon helvum) colony in Kasanka National Park, Zambia with cameras encircling the colony to record evening emergence. Detection of bats was robust to deteriorating lighting conditions and changing backgrounds. Combined over five days, our population estimates ranged between 750,000 and 976,000 bats with a mean of 857,233. In addition to counts, we extracted wingbeat frequency, flight altitude, and local group polarity for 639,414 individuals. This open access method is an inexpensive but powerful approach that, in addition to radial emergences from central locations, can also be applied to unidirectional movements of flying groups, such as migratory streams of birds.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
570 Biowissenschaften, Biologie
Schlagwörter
bats, computer vision, convolutional neural network, flight dynamics, image analysis, migration, population estimate
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690KOGER, Benjamin, Edward HURME, Blair R. COSTELLOE, Michael Teague O'MARA, Martin WIKELSKI, Roland KAYS, Dina K. N. DECHMANN, 2023. An automated approach for counting groups of flying animals applied to one of the world's largest bat colonies. In: Ecosphere. Wiley. 2023, 14(6), e4590. eISSN 2150-8925. Available under: doi: 10.1002/ecs2.4590
BibTex
@article{Koger2023-06autom-67337,
  year={2023},
  doi={10.1002/ecs2.4590},
  title={An automated approach for counting groups of flying animals applied to one of the world's largest bat colonies},
  number={6},
  volume={14},
  journal={Ecosphere},
  author={Koger, Benjamin and Hurme, Edward and Costelloe, Blair R. and O'Mara, Michael Teague and Wikelski, Martin and Kays, Roland and Dechmann, Dina K. N.},
  note={Article Number: e4590}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/67337">
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-07-07T10:46:02Z</dcterms:available>
    <dc:contributor>Hurme, Edward</dc:contributor>
    <dc:creator>Wikelski, Martin</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-07-07T10:46:02Z</dc:date>
    <dc:rights>Attribution 4.0 International</dc:rights>
    <dc:contributor>Dechmann, Dina K. N.</dc:contributor>
    <dc:creator>Hurme, Edward</dc:creator>
    <dc:creator>O'Mara, Michael Teague</dc:creator>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/67337/1/Koger_2-d70qb9izqhdw2.pdf"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:issued>2023-06</dcterms:issued>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/67337"/>
    <dc:language>eng</dc:language>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/67337/1/Koger_2-d70qb9izqhdw2.pdf"/>
    <dcterms:abstract>Estimating animal populations is essential for conservation. Censusing large congregations is especially important since these are priorities for protection, but efficiently counting hundreds of thousands of moving animals remains a challenge. We developed a deep learning-based system using consumer cameras that not only counts but also records behavioral information for large numbers of flying animals in a range of lighting conditions including near darkness. We built a robust training set without human labeling by leveraging data augmentation and background subtraction. We demonstrate this approach by estimating the size of a straw-colored fruit bat (Eidolon helvum) colony in Kasanka National Park, Zambia with cameras encircling the colony to record evening emergence. Detection of bats was robust to deteriorating lighting conditions and changing backgrounds. Combined over five days, our population estimates ranged between 750,000 and 976,000 bats with a mean of 857,233. In addition to counts, we extracted wingbeat frequency, flight altitude, and local group polarity for 639,414 individuals. This open access method is an inexpensive but powerful approach that, in addition to radial emergences from central locations, can also be applied to unidirectional movements of flying groups, such as migratory streams of birds.</dcterms:abstract>
    <dcterms:title>An automated approach for counting groups of flying animals applied to one of the world's largest bat colonies</dcterms:title>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:contributor>Koger, Benjamin</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dc:contributor>Wikelski, Martin</dc:contributor>
    <dc:contributor>Costelloe, Blair R.</dc:contributor>
    <dc:creator>Kays, Roland</dc:creator>
    <dc:creator>Costelloe, Blair R.</dc:creator>
    <dc:creator>Dechmann, Dina K. N.</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dc:contributor>O'Mara, Michael Teague</dc:contributor>
    <dc:contributor>Kays, Roland</dc:contributor>
    <dc:creator>Koger, Benjamin</dc:creator>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Link zu Forschungsdaten
Beschreibung der Forschungsdaten
Code
Data
Diese Publikation teilen