Publikation:

Enhancing document structure analysis using visual analytics

Lade...
Vorschaubild

Dateien

keim.pdf
keim.pdfGröße: 626.8 KBDownloads: 643

Datum

2010

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

Proceedings of the 2010 ACM Symposium on Applied Computing - SAC '10. New York, New York, USA: ACM Press, 2010, pp. 8-12. ISBN 978-1-60558-639-7. Available under: doi: 10.1145/1774088.1774091

Zusammenfassung

During the last decade national archives, libraries, museums and companies started to make their records, books and files electronically available. In order to allow efficient access of this information, the content of the documents must be stored in database and information retrieval systems. State-of-the-art indexing techniques mostly rely on the information explicitly available in the text portions of documents. Documents usually contain a significant amount of implicit information such as their logical structure which is not directly accessible (unless the documents are available as well-structured XML-files) and is therefore not used in the search process. In this paper, a new approach for analyzing the logical structure of text documents is presented. The problem of state-of-the-art methods is that they have been developed for a particular type of documents and can only handle documents of that type. In most cases, adaptation and re-training for a different document type is not possible. Our proposed method allows an efficient and effective adaptation of the structure analysis process by combining state-of-the-art machine learning with novel interactive visualization techniques, allowing a quick adaptation of the structure analysis process to unknown document classes and new tasks without requiring a predefined training set.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

The 2010 ACM Symposium on Applied Computing - SAC '10, 22. März 2010 - 26. März 2010, Sierre, Switzerland
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690STOFFEL, Andreas, David SPRETKE, Henrik KINNEMANN, Daniel A. KEIM, 2010. Enhancing document structure analysis using visual analytics. The 2010 ACM Symposium on Applied Computing - SAC '10. Sierre, Switzerland, 22. März 2010 - 26. März 2010. In: Proceedings of the 2010 ACM Symposium on Applied Computing - SAC '10. New York, New York, USA: ACM Press, 2010, pp. 8-12. ISBN 978-1-60558-639-7. Available under: doi: 10.1145/1774088.1774091
BibTex
@inproceedings{Stoffel2010Enhan-12727,
  year={2010},
  doi={10.1145/1774088.1774091},
  title={Enhancing document structure analysis using visual analytics},
  isbn={978-1-60558-639-7},
  publisher={ACM Press},
  address={New York, New York, USA},
  booktitle={Proceedings of the 2010 ACM Symposium on Applied Computing - SAC '10},
  pages={8--12},
  author={Stoffel, Andreas and Spretke, David and Kinnemann, Henrik and Keim, Daniel A.}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/12727">
    <dc:contributor>Kinnemann, Henrik</dc:contributor>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/12727/2/keim.pdf"/>
    <dc:contributor>Keim, Daniel A.</dc:contributor>
    <dcterms:title>Enhancing document structure analysis using visual analytics</dcterms:title>
    <dc:language>eng</dc:language>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-09-21T07:55:47Z</dcterms:available>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/12727"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/12727/2/keim.pdf"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:abstract xml:lang="eng">During the last decade national archives, libraries, museums and companies started to make their records, books and files electronically available. In order to allow efficient access of this information, the content of the documents must be stored in database and information retrieval systems. State-of-the-art indexing techniques mostly rely on the information explicitly available in the text portions of documents. Documents usually contain a significant amount of implicit information such as their logical structure which is not directly accessible (unless the documents are available as well-structured XML-files) and is therefore not used in the search process. In this paper, a new approach for analyzing the logical structure of text documents is presented. The problem of state-of-the-art methods is that they have been developed for a particular type of documents and can only handle documents of that type. In most cases, adaptation and re-training for a different document type is not possible. Our proposed method allows an efficient and effective adaptation of the structure analysis process by combining state-of-the-art machine learning with novel interactive visualization techniques, allowing a quick adaptation of the structure analysis process to unknown document classes and new tasks without requiring a predefined training set.</dcterms:abstract>
    <dc:contributor>Spretke, David</dc:contributor>
    <dc:rights>terms-of-use</dc:rights>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-09-21T07:55:47Z</dc:date>
    <dc:creator>Stoffel, Andreas</dc:creator>
    <dc:creator>Spretke, David</dc:creator>
    <dc:contributor>Stoffel, Andreas</dc:contributor>
    <dcterms:bibliographicCitation>First publ. in: SAC '10 Proceedings of the 2010 ACM Symposium on Applied Computing. - 2010. - S. 8-12. - ISBN 978-1-60558-639-7</dcterms:bibliographicCitation>
    <dc:creator>Kinnemann, Henrik</dc:creator>
    <dcterms:issued>2010</dcterms:issued>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Keim, Daniel A.</dc:creator>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen