Publikation:

Semidefinite representation for convex hulls of real algebraic curves

Lade...
Vorschaubild

Dateien

Scheiderer_2-1n6fa7dg51tl00.pdf
Scheiderer_2-1n6fa7dg51tl00.pdfGröße: 534.63 KBDownloads: 282

Datum

2018

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

DOI (zitierfähiger Link)

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

SIAM Journal on Applied Algebra and Geometry. 2018, 2(1), pp. 1-25. eISSN 2470-6566. Available under: doi: 10.1137/17M1115113

Zusammenfassung

We show that the closed convex hull of any one-dimensional semialgebraic subset of $\mathbb{R}^n$ is a spectrahedral shadow, meaning that it can be written as a linear image of the solution set of some linear matrix inequality. This is proved by an application of the moment relaxation method. Given a nonsingular affine real algebraic curve $C$ and a compact semialgebraic subset $K$ of its $\mathbb{R}$-points, the preordering $\mathscr{P}(K)$ of all regular functions on $C$ that are nonnegative on $K$ is known to be finitely generated. Our main result, from which all others are derived, says that $\mathscr{P}(K)$ is stable, meaning that uniform degree bounds exist for weighted sum of squares representations of elements of $\mathscr{P}(K)$. We also extend this last result to the case where $K$ is only virtually compact. The main technical tool for the proof of stability is the archimedean local-global principle. As a consequence of our results we show that every convex semialgebraic subset of $\mathbb{R}^2$ is a spectrahedral shadow.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

spectrahedral shadows, convex algebraic geometry, real algebraic curves, convex hull, linear matrix inequalities, moment relaxation, semidefinite programming, Helton-Nie conjecture

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690SCHEIDERER, Claus, 2018. Semidefinite representation for convex hulls of real algebraic curves. In: SIAM Journal on Applied Algebra and Geometry. 2018, 2(1), pp. 1-25. eISSN 2470-6566. Available under: doi: 10.1137/17M1115113
BibTex
@article{Scheiderer2018Semid-23348.2,
  year={2018},
  doi={10.1137/17M1115113},
  title={Semidefinite representation for convex hulls of real algebraic curves},
  number={1},
  volume={2},
  journal={SIAM Journal on Applied Algebra and Geometry},
  pages={1--25},
  author={Scheiderer, Claus}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/23348.2">
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-09-10T11:54:49Z</dcterms:available>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:contributor>Scheiderer, Claus</dc:contributor>
    <dc:creator>Scheiderer, Claus</dc:creator>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/23348.2/1/Scheiderer_2-1n6fa7dg51tl00.pdf"/>
    <dc:language>eng</dc:language>
    <dcterms:issued>2018</dcterms:issued>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-09-10T11:54:49Z</dc:date>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:title>Semidefinite representation for convex hulls of real algebraic curves</dcterms:title>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/23348.2"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/23348.2/1/Scheiderer_2-1n6fa7dg51tl00.pdf"/>
    <dcterms:abstract xml:lang="eng">We show that the closed convex hull of any one-dimensional semialgebraic subset of $\mathbb{R}^n$ is a spectrahedral shadow, meaning that it can be written as a linear image of the solution set of some linear matrix inequality. This is proved by an application of the moment relaxation method. Given a nonsingular affine real algebraic curve $C$ and a compact semialgebraic subset $K$ of its $\mathbb{R}$-points, the preordering $\mathscr{P}(K)$ of all regular functions on $C$ that are nonnegative on $K$ is known to be finitely generated. Our main result, from which all others are derived, says that $\mathscr{P}(K)$ is stable, meaning that uniform degree bounds exist for weighted sum of squares representations of elements of $\mathscr{P}(K)$. We also extend this last result to the case where $K$ is only virtually compact. The main technical tool for the proof of stability is the archimedean local-global principle. As a consequence of our results we show that every convex semialgebraic subset of $\mathbb{R}^2$ is a spectrahedral shadow.</dcterms:abstract>
    <dc:rights>terms-of-use</dc:rights>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Unbekannt
Diese Publikation teilen

Versionsgeschichte

Gerade angezeigt 1 - 2 von 2
VersionDatumZusammenfassung
2*
2018-08-27 09:32:04
2013-06-04 10:14:28
* Ausgewählte Version