Publikation: Feature-driven visual analytics of soccer data
Dateien
Datum
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Soccer is one the most popular sports today and also very interesting from an scientific point of view. We present a system for analyzing high-frequency position-based soccer data at various levels of detail, allowing to interactively explore and analyze for movement features and game events. Our Visual Analytics method covers single-player, multi-player and event-based analytical views. Depending on the task the most promising features are semi-automatically selected, processed, and visualized. Our aim is to help soccer analysts in finding the most important and interesting events in a match. We present a flexible, modular, and expandable layer-based system allowing in-depth analysis. The integration of Visual Analytics techniques into the analysis process enables the analyst to find interesting events based on classification and allows, by a set of custom views, to communicate the found results. The feedback loop in the Visual Analytics pipeline helps to further improve the classification results. We evaluate our approach by investigating real-world soccer matches and collecting additional expert feedback. Several use cases and findings illustrate the capabilities of our approach.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
JANETZKO, Halldor, Dominik SACHA, Tobias SCHRECK, Daniel A. KEIM, Oliver DEUSSEN, 2014. Feature-driven visual analytics of soccer data. IEEE Conference on Visual Analytics Science and Technology (VAST), 2014. Paris, 9. Okt. 2014 - 14. Okt. 2014. In: MIN CHEN ..., , ed.. 2014 IEEE Conference on Visual Analytics Science and Technology, Paris, France, 9-14 October 2014, Proceedings. Piscataway, NJ: IEEE, 2014, pp. 13-22. ISBN 978-1-4799-6227-3. Available under: doi: 10.1109/VAST.2014.7042477BibTex
@inproceedings{Janetzko2014Featu-30188, year={2014}, doi={10.1109/VAST.2014.7042477}, title={Feature-driven visual analytics of soccer data}, isbn={978-1-4799-6227-3}, publisher={IEEE}, address={Piscataway, NJ}, booktitle={2014 IEEE Conference on Visual Analytics Science and Technology, Paris, France, 9-14 October 2014, Proceedings}, pages={13--22}, editor={Min Chen ...}, author={Janetzko, Halldor and Sacha, Dominik and Schreck, Tobias and Keim, Daniel A. and Deussen, Oliver} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/30188"> <dc:creator>Sacha, Dominik</dc:creator> <dc:contributor>Schreck, Tobias</dc:contributor> <dc:creator>Schreck, Tobias</dc:creator> <dc:creator>Deussen, Oliver</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:contributor>Deussen, Oliver</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:issued>2014</dcterms:issued> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-03-11T07:51:25Z</dc:date> <dcterms:abstract xml:lang="eng">Soccer is one the most popular sports today and also very interesting from an scientific point of view. We present a system for analyzing high-frequency position-based soccer data at various levels of detail, allowing to interactively explore and analyze for movement features and game events. Our Visual Analytics method covers single-player, multi-player and event-based analytical views. Depending on the task the most promising features are semi-automatically selected, processed, and visualized. Our aim is to help soccer analysts in finding the most important and interesting events in a match. We present a flexible, modular, and expandable layer-based system allowing in-depth analysis. The integration of Visual Analytics techniques into the analysis process enables the analyst to find interesting events based on classification and allows, by a set of custom views, to communicate the found results. The feedback loop in the Visual Analytics pipeline helps to further improve the classification results. We evaluate our approach by investigating real-world soccer matches and collecting additional expert feedback. Several use cases and findings illustrate the capabilities of our approach.</dcterms:abstract> <dcterms:title>Feature-driven visual analytics of soccer data</dcterms:title> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-03-11T07:51:25Z</dcterms:available> <dc:contributor>Keim, Daniel A.</dc:contributor> <dc:contributor>Sacha, Dominik</dc:contributor> <dc:language>eng</dc:language> <foaf:homepage rdf:resource="http://localhost:8080/"/> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/30188"/> <dc:creator>Janetzko, Halldor</dc:creator> <dc:creator>Keim, Daniel A.</dc:creator> <dc:contributor>Janetzko, Halldor</dc:contributor> </rdf:Description> </rdf:RDF>