Feature-driven visual analytics of soccer data

Lade...
Vorschaubild
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2014
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published
Erschienen in
MIN CHEN ..., , ed.. 2014 IEEE Conference on Visual Analytics Science and Technology, Paris, France, 9-14 October 2014, Proceedings. Piscataway, NJ: IEEE, 2014, pp. 13-22. ISBN 978-1-4799-6227-3. Available under: doi: 10.1109/VAST.2014.7042477
Zusammenfassung

Soccer is one the most popular sports today and also very interesting from an scientific point of view. We present a system for analyzing high-frequency position-based soccer data at various levels of detail, allowing to interactively explore and analyze for movement features and game events. Our Visual Analytics method covers single-player, multi-player and event-based analytical views. Depending on the task the most promising features are semi-automatically selected, processed, and visualized. Our aim is to help soccer analysts in finding the most important and interesting events in a match. We present a flexible, modular, and expandable layer-based system allowing in-depth analysis. The integration of Visual Analytics techniques into the analysis process enables the analyst to find interesting events based on classification and allows, by a set of custom views, to communicate the found results. The feedback loop in the Visual Analytics pipeline helps to further improve the classification results. We evaluate our approach by investigating real-world soccer matches and collecting additional expert feedback. Several use cases and findings illustrate the capabilities of our approach.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
004 Informatik
Schlagwörter
Konferenz
IEEE Conference on Visual Analytics Science and Technology (VAST), 2014, 9. Okt. 2014 - 14. Okt. 2014, Paris
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690JANETZKO, Halldor, Dominik SACHA, Tobias SCHRECK, Daniel A. KEIM, Oliver DEUSSEN, 2014. Feature-driven visual analytics of soccer data. IEEE Conference on Visual Analytics Science and Technology (VAST), 2014. Paris, 9. Okt. 2014 - 14. Okt. 2014. In: MIN CHEN ..., , ed.. 2014 IEEE Conference on Visual Analytics Science and Technology, Paris, France, 9-14 October 2014, Proceedings. Piscataway, NJ: IEEE, 2014, pp. 13-22. ISBN 978-1-4799-6227-3. Available under: doi: 10.1109/VAST.2014.7042477
BibTex
@inproceedings{Janetzko2014Featu-30188,
  year={2014},
  doi={10.1109/VAST.2014.7042477},
  title={Feature-driven visual analytics of soccer data},
  isbn={978-1-4799-6227-3},
  publisher={IEEE},
  address={Piscataway, NJ},
  booktitle={2014 IEEE Conference on Visual Analytics Science and Technology, Paris, France, 9-14 October 2014, Proceedings},
  pages={13--22},
  editor={Min Chen ...},
  author={Janetzko, Halldor and Sacha, Dominik and Schreck, Tobias and Keim, Daniel A. and Deussen, Oliver}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/30188">
    <dc:creator>Sacha, Dominik</dc:creator>
    <dc:contributor>Schreck, Tobias</dc:contributor>
    <dc:creator>Schreck, Tobias</dc:creator>
    <dc:creator>Deussen, Oliver</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>Deussen, Oliver</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:issued>2014</dcterms:issued>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-03-11T07:51:25Z</dc:date>
    <dcterms:abstract xml:lang="eng">Soccer is one the most popular sports today and also very interesting from an scientific point of view. We present a system for analyzing high-frequency position-based soccer data at various levels of detail, allowing to interactively explore and analyze for movement features and game events. Our Visual Analytics method covers single-player, multi-player and event-based analytical views. Depending on the task the most promising features are semi-automatically selected, processed, and visualized. Our aim is to help soccer analysts in finding the most important and interesting events in a match. We present a flexible, modular, and expandable layer-based system allowing in-depth analysis. The integration of Visual Analytics techniques into the analysis process enables the analyst to find interesting events based on classification and allows, by a set of custom views, to communicate the found results. The feedback loop in the Visual Analytics pipeline helps to further improve the classification results. We evaluate our approach by investigating real-world soccer matches and collecting additional expert feedback. Several use cases and findings illustrate the capabilities of our approach.</dcterms:abstract>
    <dcterms:title>Feature-driven visual analytics of soccer data</dcterms:title>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-03-11T07:51:25Z</dcterms:available>
    <dc:contributor>Keim, Daniel A.</dc:contributor>
    <dc:contributor>Sacha, Dominik</dc:contributor>
    <dc:language>eng</dc:language>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/30188"/>
    <dc:creator>Janetzko, Halldor</dc:creator>
    <dc:creator>Keim, Daniel A.</dc:creator>
    <dc:contributor>Janetzko, Halldor</dc:contributor>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen