Robotic Sensing and Stimuli Provision for Guided Plant Growth

No Thumbnail Available
Files
There are no files associated with this item.
Date
2019
Authors
Heinrich, Mary Katherine
Hofstadler, Daniel Nicolas
Kuksin, Igor
Zahadat, Payam
Schmickl, Thomas
Ayres, Phil
Editors
Contact
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
URI (citable link)
DOI (citable link)
ArXiv-ID
International patent number
Link to the license
EU project number
Project
Open Access publication
Restricted until
Title in another language
Research Projects
Organizational Units
Journal Issue
Publication type
Journal article
Publication status
Published
Published in
Journal of visualized experiments : JoVE ; 2019, 149. - e59835. - JoVE Journal of Visualized Experiments. - eISSN 1940-087X
Abstract
Robot systems are actively researched for manipulation of natural plants, typically restricted to agricultural automation activities such as harvest, irrigation, and mechanical weed control. Extending this research, we introduce here a novel methodology to manipulate the directional growth of plants via their natural mechanisms for signaling and hormone distribution. An effective methodology of robotic stimuli provision can open up possibilities for new experimentation with later developmental phases in plants, or for new biotechnology applications such as shaping plants for green walls. Interaction with plants presents several robotic challenges, including short-range sensing of small and variable plant organs, and the controlled actuation of plant responses that are impacted by the environment in addition to the provided stimuli. In order to steer plant growth, we develop a group of immobile robots with sensors to detect the proximity of growing tips, and with diodes to provide light stimuli that actuate phototropism. The robots are tested with the climbing common bean, Phaseolus vulgaris, in experiments having durations up to five weeks in a controlled environment. With robots sequentially emitting blue light-peak emission at wavelength 465 nm-plant growth is successfully steered through successive binary decisions along mechanical supports to reach target positions. Growth patterns are tested in a setup up to 180 cm in height, with plant stems grown up to roughly 250 cm in cumulative length over a period of approximately seven weeks. The robots coordinate themselves and operate fully autonomously. They detect approaching plant tips by infrared proximity sensors and communicate via radio to switch between blue light stimuli and dormant status, as required. Overall, the obtained results support the effectiveness of combining robot and plant experiment methodologies, for the study of potentially complex interactions between natural and engineered autonomous systems.
Summary in another language
Subject (DDC)
004 Computer Science
Keywords
bio-hybrid, self-organization, distributed control, adaptive construction, biotechnology, phototropism
Conference
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690WAHBY, Mostafa, Mary Katherine HEINRICH, Daniel Nicolas HOFSTADLER, Julian PETZOLD, Igor KUKSIN, Payam ZAHADAT, Thomas SCHMICKL, Phil AYRES, Heiko HAMANN, 2019. Robotic Sensing and Stimuli Provision for Guided Plant Growth. In: Journal of visualized experiments : JoVE. JoVE Journal of Visualized Experiments(149), e59835. eISSN 1940-087X. Available under: doi: 10.3791/59835
BibTex
@article{Wahby2019Robot-58534,
  year={2019},
  doi={10.3791/59835},
  title={Robotic Sensing and Stimuli Provision for Guided Plant Growth},
  number={149},
  journal={Journal of visualized experiments : JoVE},
  author={Wahby, Mostafa and Heinrich, Mary Katherine and Hofstadler, Daniel Nicolas and Petzold, Julian and Kuksin, Igor and Zahadat, Payam and Schmickl, Thomas and Ayres, Phil and Hamann, Heiko},
  note={Article Number: e59835}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/58534">
    <dc:contributor>Kuksin, Igor</dc:contributor>
    <dc:creator>Hamann, Heiko</dc:creator>
    <dcterms:abstract xml:lang="eng">Robot systems are actively researched for manipulation of natural plants, typically restricted to agricultural automation activities such as harvest, irrigation, and mechanical weed control. Extending this research, we introduce here a novel methodology to manipulate the directional growth of plants via their natural mechanisms for signaling and hormone distribution. An effective methodology of robotic stimuli provision can open up possibilities for new experimentation with later developmental phases in plants, or for new biotechnology applications such as shaping plants for green walls. Interaction with plants presents several robotic challenges, including short-range sensing of small and variable plant organs, and the controlled actuation of plant responses that are impacted by the environment in addition to the provided stimuli. In order to steer plant growth, we develop a group of immobile robots with sensors to detect the proximity of growing tips, and with diodes to provide light stimuli that actuate phototropism. The robots are tested with the climbing common bean, Phaseolus vulgaris, in experiments having durations up to five weeks in a controlled environment. With robots sequentially emitting blue light-peak emission at wavelength 465 nm-plant growth is successfully steered through successive binary decisions along mechanical supports to reach target positions. Growth patterns are tested in a setup up to 180 cm in height, with plant stems grown up to roughly 250 cm in cumulative length over a period of approximately seven weeks. The robots coordinate themselves and operate fully autonomously. They detect approaching plant tips by infrared proximity sensors and communicate via radio to switch between blue light stimuli and dormant status, as required. Overall, the obtained results support the effectiveness of combining robot and plant experiment methodologies, for the study of potentially complex interactions between natural and engineered autonomous systems.</dcterms:abstract>
    <dc:creator>Hofstadler, Daniel Nicolas</dc:creator>
    <dcterms:title>Robotic Sensing and Stimuli Provision for Guided Plant Growth</dcterms:title>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:language>eng</dc:language>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Schmickl, Thomas</dc:creator>
    <dc:contributor>Hamann, Heiko</dc:contributor>
    <dc:contributor>Petzold, Julian</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Wahby, Mostafa</dc:creator>
    <dc:creator>Zahadat, Payam</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-09-08T09:05:23Z</dcterms:available>
    <dc:contributor>Zahadat, Payam</dc:contributor>
    <dc:contributor>Heinrich, Mary Katherine</dc:contributor>
    <dc:contributor>Schmickl, Thomas</dc:contributor>
    <dc:creator>Heinrich, Mary Katherine</dc:creator>
    <dc:creator>Petzold, Julian</dc:creator>
    <dc:contributor>Ayres, Phil</dc:contributor>
    <dc:contributor>Hofstadler, Daniel Nicolas</dc:contributor>
    <dc:contributor>Wahby, Mostafa</dc:contributor>
    <dc:creator>Ayres, Phil</dc:creator>
    <dc:creator>Kuksin, Igor</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-09-08T09:05:23Z</dc:date>
    <dc:rights>terms-of-use</dc:rights>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/58534"/>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dcterms:issued>2019</dcterms:issued>
  </rdf:Description>
</rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Contact
URL of original publication
Test date of URL
Examination date of dissertation
Method of financing
Comment on publication
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
No
Refereed
Yes